5-23-2006

Energy-Based Model for Electrowetting-Induced Droplet Actuation

V. Bahadur

S V. Garimella
Purdue University, sureshg@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/coolingpubs

http://dx.doi.org/10.1088/0960-1317/16/8/009

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
Energy-based model for electrowetting-induced droplet actuation*

V Bahadur and S V Garimella‡

School of Mechanical Engineering
Purdue University
West Lafayette, IN 47907-2088
USA

Abstract

Electrowetting (EW) induced droplet motion has been explored in the past decade in view of its promising applications in the field of microfluidics. This paper demonstrates the potential of energy-based analyses for modeling the performance of EW-based fluid actuation systems. Analyses based on system energy minimization offer simplified modeling tools to predict overall performance of EW systems while circumventing the need to model the numerous complexities in the system. An analytical model is developed to estimate the actuation force on a droplet moving between two electrodes. The origins and contributions of various components of the actuation force are analyzed. The effects of dielectric parameters, electrode layout, droplet geometry and shape are discussed with the objective of maximizing the actuation force. The actuation force model is combined with semi-analytical models for predicting the forces opposing droplet motion to develop a model that predicts transient EW-induced droplet motion. Parametric results are obtained to evaluate the importance of operating voltage, fluid properties and droplet geometry on droplet motion.

Keywords: electrowetting, droplet motion, energy minimization, microfluidics

* Submitted for publication in Journal of Micromechanics and Microengineering, February 2006, and in revised form, May 2006

‡ Corresponding author: E-mail: sureshg@purdue.edu
1. Introduction

Control of fluid motion at the microscale by tailoring surface tension is attractive for a range of microfluidic applications such as lab-on-chip systems, biomedical devices and other MEMS-based fluidic devices. A scaling analysis reveals that surface tension becomes dominant over pressure and body forces as systems scale down to the sub-millimeter range, pointing to an important tool for microfluidic flow control. Moving mechanical parts, undesirable in microscale systems, are usually not required for surface tension-based control. A number of surface tension-based fluid handling techniques have been discussed in the literature, the most significant among which include electrowetting (EW) [1] (reduction of interfacial tension by the application of an electric field), thermocapillarity driven pumping [2] (reduction of surface tension by temperature, leading to fluid motion) opto-electrowetting [3] based pumping (light-controlled surface tension induced pumping) and vapor bubble based pumping [4].

Electrowetting has been used to demonstrate droplet actuation [5,6,7,8,9,10,11] and other microfluidic operations such as the formation, mixing and splitting of droplets [12]. There has also been noteworthy progress in understanding the physics governing phenomena which influence EW systems, such as contact angle saturation [13], role of the electric double layer [14] and dynamics of the three phase line [15]. Contact-line friction and contact angle hysteresis are among the phenomena which remain incompletely resolved and pose significant challenges to modeling EW based fluid motion. Additionally, the use of empirical velocity profiles [8,16] in a discrete droplet to estimate viscous stresses is an assumption which has yet to be validated. Such complexities and uncertainties have limited attempts at modeling surface tension-induced droplet motion. The most comprehensive model for predicting steady-state EW induced droplet motion was proposed by Ren et al. [17], who arrived at the EW actuation force by estimating the pressure gradient across the droplet using the Laplace [18] equation. All the forces opposing droplet motion were represented by semi-empirical models consisting of multiple fitting parameters, which were obtained from experimental results. Kuo et al. [8] modeled the EW induced pressure gradient in terms of the contact angle modification resulting from the application of an EW voltage. Oprins et al. [16] modeled the EW actuation force on a droplet by estimating the electrostatic energy resulting from its equilibrium shape, under the action of electrostatic and surface tension forces. This was used in a transient droplet flow model which estimated the forces opposing droplet motion in a semi-empirical manner. Mohseni and Dolatabadi [7] developed a Volume-of-Fluid based model to predict transient and steady-state droplet motion, with EW effects introduced in terms of modified contact angles per Lippman’s [18] equation.

The primary objective of this paper is to present an energy-based model for estimating the EW actuation force acting on a droplet during its transition. The results obtained from this model are exactly similar to those obtained from an electromechanical model. This shows EW-induced droplet motion as an electromechanical phenomenon, as opposed to a contact angle change-induced effect. The actuation force model is purely analytical in nature and facilitates a deeper understanding of the physics governing EW actuation. The influence of actuation voltage, electrode and droplet geometries and dielectric parameters on the actuation force can be clearly understood using this model. The second objective of the paper is to combine the actuation force model with available semi-empirical models for predicting forces opposing droplet motion, to develop a means to predict transient EW droplet motion. The present work analyzes the suitability of these models for predicting droplet motion.

2. Energy-Based Modeling of Electrowetting Systems

The traditional concept of EWOD (ElectroWetting on Dielectric) is founded on the premise of a reduction in dielectric-liquid interfacial energy by the application of a voltage between a conducting droplet and an underlying dielectric layer. In a recent paper, Jones [19]
described electrowetting as an electromechanical phenomenon; however the traditional interpretation of EW is used to develop the modeling framework in the present work and gives the same results as those obtained from a purely electromechanical model. To actuate droplets, the interfacial energy at one end of the droplet is reduced by applying a voltage to an electrode on that end of the droplet. The electric field-induced reduction in interfacial energy causes the droplet to locally spread out. The resulting change in contact angles sets up a pressure gradient which drives the droplet towards the actuated electrode. This system can also be analyzed from energy-minimization considerations, according to which the droplet minimizes its surface energy by transiting to the actuated electrode. The energy gradient is thus the driving force behind EW-induced motion of a fluid element. Jones [19] compared the contact angle approach and the energy-based approach and argued that EW-induced motion is primarily an electromechanical phenomena rather than one resulting from a contact angle change. An energy gradient-based approach has also been used by Lee et al. [20] to estimate the EW actuation force on a horizontal fluid capillary. The present work further develops and applies the energy gradient concept to develop an analytical model to predict the EW actuation force on a droplet.

The energy-minimization based approach is first demonstrated through a prediction of the capillary rise or fall due to an EW voltage applied to the capillary walls; this example serves to highlight the electromechanical nature of EW as emphasized by Jones [19]. Figure 1 shows a circular capillary of radius R and length L with a coating of dielectric material on its inner wall. The thickness of the dielectric layer is t and its dielectric constant is k. Application of an EW voltage between the dielectric and the conducting fluid changes the capillary height as discussed below. This system can be analyzed by estimating the total system energy as a function of capillary height h. The total energy is the sum of the dielectric-liquid interfacial energy, the dielectric-air interfacial energy and the potential energy of the liquid column. The system energy when the liquid meniscus is at a height h, with an applied voltage V is

$$E(h) = 2\pi Rh \left(\gamma_{SL}^0 - \frac{k\varepsilon_0 V^2}{2t} \right) + 2\pi R (L - h) \gamma_{SA}^0 + (\pi R^2 \rho_l h \left(\frac{g h}{2} \right)$$

(1)

where γ_{SL}^0 is the dielectric-liquid interfacial energy in the absence of an EW voltage, γ_{SA}^0 is the dielectric-air interfacial energy, ε_0 is the permittivity of vacuum, g is the acceleration due to gravity and ρ_l is the liquid density. Lippman’s [18] equation is used with equation (1) to quantify the decrease in dielectric-liquid interfacial energy upon the application of an EW voltage:

$$\gamma_{SL} = \gamma_{SL}^0 - \frac{k\varepsilon_0 V^2}{2t}$$

(2)

The equilibrium height of the meniscus corresponds to the minimum energy position of the system, as follows:

$$\frac{dE(h)}{dh} = 0$$

(3)

$$h_{eq} = \frac{2(\gamma_{SL}^0 - \gamma_{SA}^0) + k\varepsilon_0 V^2}{\rho_l g R + t\rho_l g R}$$

(4)

When $\gamma_{SA} > \gamma_{SL}^0$, there is a capillary rise even without an EW voltage. Similarly for $\gamma_{SA} < \gamma_{SL}^0$, there is a capillary fall in the absence of an EW voltage. Application of an EW voltage decreases the energy required to wet the capillary surface by decreasing γ_{SL} and results in a rise in the meniscus level.
Figure 1. EW-induced capillary rise.

The interfacial energies can be related to the non-EW static droplet contact angle θ_0 by Young’s [18] equation.

$$\gamma_{SA}^0 - \gamma_{SL}^0 = \gamma_{LA}^0 \cos \theta_0$$

(5)

where γ_{LA}^0 is the liquid-air interfacial energy. Equations (4) and (5) can be combined to yield an expression for capillary rise in terms of the contact angle:

$$h_{eq} = \frac{2\gamma_{LA}^0 \cos \theta_0}{\rho_i g R} + \frac{k \varepsilon_0 V^2}{t \rho_i g R}$$

(6)

For the case of no EW voltage the above equation reduces to the classical estimate for predicting rise and fall of liquids in a circular capillary in terms of the contact angle. There is no reported work on EW-induced capillary rise in circular capillaries; however Chen and Hsieh [21] used the contact-angle approach to develop an expression for EW-induced capillary rise between flat parallel plates and verified it experimentally. The same expression can also be arrived at by an energy-based analysis of a parallel-plate capillary system, similar to the one carried out for the circular capillary above. Capillarity, with and without EW, can thus be predicted with a knowledge of interfacial energies and areas of the interfaces involved, without invoking the use of contact angles. The above example serves to demonstrate the potential utility of energy-based methods for analyzing EW based systems.

3. Energy-Based Modeling of EW Actuation Force on a Droplet

3.1 Physical model

One means for effecting droplet movement [5] using EW is illustrated in Figure 2. The device shown consists of two flat plates separated by a selected spacing. Control electrodes are fabricated on the lower plate such that they can be individually addressed. They are covered by a dielectric layer and a thin hydrophobic layer to ensure high initial droplet contact angles. While a
hydrophobic layer is not essential to the performance of this device, it allows for larger changes in contact angle upon application of the electric field. The upper plate consists of a single, grounded electrode plane. The top electrode is also coated with a dielectric layer and a hydrophobic layer. The droplet size is chosen to be slightly larger than the electrode pitch so that it overlaps more than one electrode. When a voltage is applied to the electrode on the right on the bottom plate, the dielectric-liquid interfacial tension on the right end of the droplet decreases. The droplet moves towards the energized electrode as a result, and reaches equilibrium when it is at the center of the energized electrode where the surface energy of the droplet is minimized. By pulsing voltages along an array of discrete electrodes, the droplet can be moved continually. It is important to note that the droplet is electrically conducting (e.g., aqueous solution of potassium chloride) and is typically surrounded by a (non-evaporating) filler fluid such as silicone oil [5] so that droplet evaporation is minimized.

![Diagram of droplet transport by electrowetting.](image)

The actuation force on a droplet during transition can be modeled by analyzing the droplet energy as a function of the droplet position. Figures 3a and 3b show side and top views of an idealized droplet transition, in which the position of the droplet leading edge is tracked by the coordinate \(x \). The droplet is sandwiched between two plates with a separation \(d \) as shown in Figure 3a with the electrode width set equal to the droplet diameter. The reduction in interfacial tension is provided by the dielectric layers of thicknesses \(d_1 \) and \(d_2 \). A voltage \(V \) applied to the right electrode on the bottom plate initiates the transition. The left electrode on the bottom plate and the top plate electrode are grounded as in the actuation scheme of Pollack et al. [5]. The droplet may also be actuated by other voltage distributions or by leaving either the top or the left electrode electrically floating. The proposed modeling framework can be used with any specified voltage actuation scheme to estimate the magnitude of the actuation force and ensure complete transition to the actuated electrode. The droplet is assumed to move as a rigid body, maintaining its circular shape during transition. While a stationary droplet assumes a circular shape due to symmetry, a droplet in transition could have a distorted ellipse-like shape due to contact angle hysteresis. It will be shown later that the model can be extended to predict droplet movement for any specified droplet shape during transition. The total droplet energy consists of the dielectric-liquid interfacial energy \(\gamma_{SL} \) and the droplet-filler fluid interfacial energy \(\gamma_{LF}^0 \). The droplet areas covering the actuated electrode \(A_1 \) and the ground electrode \(A_2 \) can be estimated from the droplet geometry.
The voltage drops across the dielectric layers causing the reduction of the dielectric-liquid interfacial energy, can be obtained from a capacitive network analysis of the system. All the capacitances are represented as parallel-plate capacitors (Figure 3a) which form the capacitive network shown in Figure 4. The droplet is assumed to be perfectly conducting so that there is no voltage drop across the droplet. The dielectric in typical EW experiments is much thicker than the ionic double layer thickness. The dielectric capacitance is thus much smaller than the double layer capacitance; consequently the entire voltage drop occurs across the dielectric layer. The electric field lines in all the parallel-plate capacitors are assumed to be perfectly straight and fringing effects at the sides are not accounted for in the present model.

Figure 3. Schematic diagram of a droplet undergoing transition: (a) side view, and (b) top view.
3.2 Analysis

The physical model proposed in the previous section is set into an analytical framework in this section to estimate the actuation force on a circular droplet during transition. For a droplet of radius r that maintains a circular shape during the entire transition, the areas of the three parallel capacitors are given by

$$A_1(x) = r^2 \cos^{-1}\left(1 - \frac{x}{r}\right) - (r-x)\sqrt{r^2 - (x-r)^2}$$ \hspace{1cm} (7)

$$A_2(x) = \pi r^2 - A_1$$ \hspace{1cm} (8)

$$A_3(x) = \pi r^2$$ \hspace{1cm} (9)

The capacitances of the three parallel-plate capacitors are

$$C_1(x) = \frac{k_1 A_1(x) \varepsilon_0}{d_1}$$ \hspace{1cm} (10)

$$C_2(x) = \frac{k_1 A_2(x) \varepsilon_0}{d_1}$$ \hspace{1cm} (11)

$$C_3(x) = \frac{k_2 A_3(x) \varepsilon_0}{d_2}$$ \hspace{1cm} (12)

where (k_1, d_1) and (k_2, d_2) is (dielectric constant, thickness) of the lower and upper dielectric layers, respectively (Figure 3a), C_1 is the capacitance of the lower plate dielectric with area A_1, C_2 is the capacitance of the lower plate dielectric with area A_2, and C_3 is the capacitance of the upper plate dielectric (Figure 3a). From the circuit analysis in Figure 4, the voltage differences across the three capacitors are:

$$V_1(x) = \frac{(C_2 + C_3)V}{(C_1 + C_2 + C_3)}$$ \hspace{1cm} (13)

$$V_2(x) = V_3(x) = \frac{C_1 V}{(C_1 + C_2 + C_3)}$$ \hspace{1cm} (14)

The droplet free energy can now be expressed as the sum of all the interfacial energies.
In the above equation, the dielectric-liquid interfacial energy \(\gamma_{SL}^0 \) is reduced by the application of an electric field as per Lippman’s [18] equation; \(\gamma_{LF}^0 \) is the droplet-filler fluid interfacial energy, which remains unchanged; and \(A_{side} \) is the cylindrical side area of the droplet, which is assumed to remain constant during the transition. The negative derivative of the energy variation gives the electrical actuation force on the droplet as a function of the transition position \(x \).

\[
F(x) = -\frac{dE(x)}{dx} \tag{16}
\]

The actuation force has three components corresponding to the three regions of the droplet surface which undergo interfacial energy change under the influence of the applied voltage:

\[
F_{act}(x) = F_1(x) + F_2(x) + F_3(x) \tag{17}
\]

where

\[
F_1(x) = \left(k_1 \varepsilon_0 \frac{V_1^2}{2d_1} \right) A_1 + \left(k_1 \varepsilon_0 \frac{V_1^2}{2d_1} \right) A_2 + \left(k_1 \varepsilon_0 \frac{V_1^2}{2d_2} \right) A_3 + \gamma_{LF}^0 A_{side} \tag{18}
\]

\[
F_2(x) = \left(k_2 \varepsilon_0 \frac{V_2^2}{2d_1} \right) A_2 + \left(k_2 \varepsilon_0 \frac{V_2^2}{2d_2} \right) A_3 \tag{19}
\]

\[
F_3(x) = \left(k_3 \varepsilon_0 \frac{V_3^2}{d_2} \right) A_3 \tag{20}
\]

\(F_1(x) \) and \(F_2(x) \) are the force components arising from the dielectric-liquid interfacial energy reduction on the actuated and ground electrodes of the bottom plate, respectively. These forces have contributions from the rates of both area and voltage change of the associated capacitance. \(F_3(x) \) has only one contribution originating from the voltage change across the top plate dielectric, since the area of \(C_3 \) is constant during transition. It may be noted that this formulation is in terms of area and voltage derivatives, and can thus be extended to any specified shape during the droplet transition, for which the voltage distributions and areas can be computed analytically or numerically. The actuation force results obtained from the present modeling framework are identical to those that would be obtained using a purely electromechanical model consisting of the three capacitances. The present model, which commences with the evaluation of surface energy, thus has an electromechanical approach at its core.

3.3 Actuation force results

Actuation force results are presented for droplet transition to an actuated electrode under the conditions outlined in Table 1. These parameters are typical of those used for experimental analysis [5,16] of EW droplet movement, and are used in all subsequent analyses and discussion in this paper unless otherwise indicated.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Droplet radius ((r) = \text{Half the electrode width})</td>
<td>1 mm</td>
</tr>
<tr>
<td>Plate separation ((d))</td>
<td>0.3 mm</td>
</tr>
<tr>
<td>Dielectric constant: Lower plate dielectric ((k_1))</td>
<td>3</td>
</tr>
<tr>
<td>Dielectric constant: Upper plate dielectric ((k_2))</td>
<td>3</td>
</tr>
</tbody>
</table>
Figure 5 shows profiles of components of the actuation force as the droplet moves to the actuated electrode. It is seen that the total force is always positive, which ensures complete transition. The total force is zero at the start of transition and it can be shown from the energy-based analysis that the initial position corresponds to a state of unstable equilibrium (of maximum energy). The position corresponding to complete transition to the actuated electrode is a stable equilibrium position (of minimum energy), which the droplet eventually attains after overshooting during the first transition and the subsequent oscillatory motion. No experimental measurements of actuation force are available in the literature; thus, actuation force models can only be validated indirectly, by using them in a subsequent droplet flow model. Oprins et al. [16] modeled the EW actuation force on a droplet moving between two plates but with a different actuation scheme; the present results are qualitatively similar to the actuation force results of Oprins et al. [16].

In terms of the variation of the different actuation force components with transition distance, F_1 is positive at the start of transition since the first term in equation (18) is dominant during the initial stages because of a large V_1. Conversely, the negative second term of equation (18) representing the gradient of V_1 dominates during later stages of transition because of an increased C_1. This results in a negative value of F_1 towards the later stages of actuation. A similar explanation can be provided for the behavior of F_2. A net positive force during the later stages of actuation is ensured by F_3 which is positive during the entire transition. Although C_3 is constant during the entire transition, a steady increase in V_3 corresponding to the decrease in V_1 ensures that F_3 stays positive and maintains an overall positive actuation force on the droplet.

3.4 Actuation force dependence on system parameters

The proposed analytical model can be used for estimating the effects of various parameters on the actuation force. First, every component of the actuation force varies as the
square of the applied voltage. Next, every component varies directly with the dielectric constant and inversely with the thickness of the dielectric layer. The dielectric layer materials considered in the literature do not vary significantly in their dielectric constant values. Reduction of the dielectric layer thickness is limited by dielectric leakage and breakdown considerations besides the need to avoid chemical reactions (such as electrolysis of droplet solution) which could occur for very thin dielectric layers. Interestingly, the actuation force does not depend on the plate spacing, underscoring the surface origins of this force. Another noteworthy observation is that the actuation force does not depend on the magnitude of dielectric-liquid interfacial tension. This is a direct consequence of Lippman’s [18] equation which states that the reduction in interfacial tension is independent of the absolute value of the interfacial tension. The actuation force is also seen to increase with the droplet radius as a direct consequence of the increased area undergoing EW-induced interfacial energy change. This increase in force with droplet radius is however directly proportional to the increase in droplet mass (with the same plate separation) so that the actuation force to droplet mass ratio remains the same. The force prediction model developed can also be used to study the influence on the actuation force of a filler fluid film being present between the droplet and the dielectric. The actuation force in the presence of a filler fluid arises from a reduction in the droplet-filler fluid interfacial tension. The system can then be analyzed by estimating each of C_1, C_2 and C_3 as a series combination of the dielectric capacitance and the filler fluid film capacitance. If the dielectric constants for the filler fluid and the dielectric layer are identical, the effect of the filler fluid is equivalent to an increase in the thickness of the dielectric layer, which leads to a reduction in the actuation force as discussed above.

In the results presented above, it was assumed that the top and bottom dielectric layer thicknesses were equal. A relative variation of these thicknesses can significantly alter the nature of the actuation force profiles. Figure 6 shows the total actuation force profiles for varying d_2, with d_1 maintained at 1 µm. For $(d_2/d_1)>1$, the total droplet actuation force is not positive throughout actuation, but instead drops to zero at an intermediate position and then becomes negative for the rest of the transition. This result is significant from a design standpoint since complete transition to the actuated electrode would not occur under these conditions. For very large values of d_2, the actuation force becomes zero at the transition midpoint. This can be explained by observing that C_3 is negligible when compared to C_2 for very large d_2. The capacitive circuit in Figure 4 therefore implies that the voltage differences will be determined by C_1 and C_2 alone, and that $C_3=C_2$, leading to $V_1=V_2$ at the transition midpoint. The complete symmetry of the situation then implies a zero actuation force at the transition midpoint. Alternatively, this phenomenon of a zero force point during transition can be understood from a study of the parameters governing the actuation force components. During the later stages of transition, a net positive force is ensured by F_3. With increasing values of d_2, the magnitude of F_3 decreases as compared to the other two components, leading to an overall negative force during the later stages of transition.
The opposite effect is observed for \(d_2 / d_1 \leq 1 \) as seen in Figure 6, wherein the total actuation force increases for decreasing values of \(d_2 \). This can be attributed to \(F_3 \) being much larger than the other two components for smaller values of \(d_2 \). In the limit of no top dielectric layer, the actuation force distribution is symmetric with respect to the transition midpoint and the actuation force at every point is maximized, which is desirable for the purpose of reducing actuation voltages. From an application viewpoint, however, a top dielectric layer of finite thickness is necessary to eliminate the possibility of chemical reactions occurring in the droplet solution. EW system design should ensure that the top layer thickness is smaller than that of the bottom layer in order to increase the actuation force\[5\]. For the ideal case of \(d_2 = 0 \), the energy-based analysis results in a single-component actuation force.

For subsequent discussions in this paper, the presence and effect of the top dielectric layer is neglected. It is important to note that the presence of a top grounded plate is still essential to the proposed actuation scheme. This ground plane fixes the droplet potential to be equal to the ground potential. In the absence of a top plate, the droplet potential would be decided by the capacitive network. At the transition midpoint, the potential difference across both \(C_1 \) and \(C_2 \) would then be equal, and the resulting symmetry would lead to a zero actuation force position at the transition midpoint\[5\] preventing complete transition to the actuated electrode. Energy-based analyses can be used in this manner to ascertain the feasibility of droplet actuation schemes involving the different electrode configurations and sizes discussed by Pollack et al.\[5\].

The results presented above were for a droplet that was circular in shape in plan view. The model can, however, be easily extended for any specified transition droplet shape. All the force components in equation (17) are expressed as derivatives of areas or voltage differences, which can be computed for any specified droplet shape. Four droplet shapes are investigated to explore the significance of droplet shape on the actuation force profile. The droplet shapes include circular, elliptical with different aspect ratios, and rectangular with rounded edges, with
dimensions as detailed in Figure 7. The modeling results of Mohseni and Dolatabadi [7] showed droplets in transition to have steady ellipse-like shapes. Such shapes result as significant contact angle hysteresis or contact-line friction cause the droplet to depart from its circular shape. Rectangular shapes with rounded edges could be obtained by setting the droplet volume equal to the volume required to cover a complete rectangular electrode. In this case, the droplet would assume the shape of the electrode to minimize its surface energy in preference to a circular shape. The transition distance (equal to electrode width) and plate separation is maintained equal for all the droplets. The width of the rectangular droplet is adjusted to make the droplet mass equal to that of the circular one. Such an adjustment is, however, not possible for the elliptical droplets since the droplet transition lengths are kept same for both shapes; the two elliptical droplets thus have different masses from the circular droplet corresponding to different widths of the elliptical droplets.

Figure 7. Droplet shapes studied for actuation force variation.

Figure 8 compares the actuation force profiles for the four droplets under the condition of an absent top dielectric layer. The actuation force is highest for the elliptical droplet with $b/a=1.5$ and lowest for the elliptical droplet with $b/a=0.5$. It should be noted that these droplet sizes correspond to the largest and smallest (in terms of mass) droplets, respectively. The variation of the actuation force normalized with the droplet mass is identical for the circular and the two elliptical droplets. The actuation force is constant for the rectangular droplet as a result of the constant droplet width. This analysis serves to illustrate the versatility of the present modeling approach in terms of its capability to analyze complex features of EW droplet motion.
4. Modeling EW-induced droplet motion

4.1 Model description

An accurate prediction of EW-induced droplet motion depends on a realistic estimation of the EW actuation force and the forces opposing droplet motion. The opposing forces of significance are the shear force due to the top and bottom plates, the viscous force exerted by the filler fluid and the contact-line friction force. Additionally, a threshold EW voltage [17] is required to initiate droplet movement by overcoming contact-angle hysteresis. The nature and dynamics of several of these opposing forces is not well understood, which renders difficult the development of a model which takes these forces into account. These phenomena have therefore been handled with semi-empirical models in the literature. The shear stress from the top and bottom plates has been modeled with the assumption of a velocity profile in the droplet [8,16]. While this provides an approximate estimate for the wall shear, the assumption of a timewise constant velocity profile in a discrete moving droplet is incorrect. However, no flow visualizations or experimental measurements inside these moving droplets have been reported.

Contact-line friction is another phenomenon which is difficult to model. Contact-line friction originates from inter-molecular attraction forces near the contact line and the nature and magnitude of this force and its relation to surface roughness is poorly understood. Oprins et al. [16] related the contact-line friction to experimentally measured droplet hysteresis angles, but this approach is of limited use since droplet hysteresis is extremely difficult to predict and depends on the fluid and solid properties in addition to the surface texture. Schneemilch et al. [22] investigated the dynamics of a moving contact line in the presence of an external electric field and compared it to a molecular-kinetics model for contact line motion. The model matched experiments reasonably well, but the model was based on certain molecular parameters and empirical constants which are not available for all materials and have not been directly related to
measurable physical properties such as surface tension and viscosity. Also, the model dealt with
the influence of an electric field on an already moving contact line, and not with field-induced
contact line motion. A commonly used modeling approach based on the molecular interaction
theory of Blake [15] consists of estimating contact-line friction as being proportional to a power
of the contact-line velocity. Ren et al. [17] and Chen et al. [21] assumed a linear relationship
between the contact-line friction and contact-line velocity and obtained the proportionality
constant from a comparison of experimental and modeling results.

The present work is not aimed at resolving these challenges to droplet motion prediction.
Instead, the objective is to study the influence of each of the opposing forces on overall droplet
motion and identify those dominant forces and parameters which need to be explored in greater
detail. Droplet transport situations considered here are those where the finer details of fluid
motion (and the associated complex modeling) are not required. The droplet is considered as a
single discrete mass moving through the filler fluid as a result of an EW actuation force, with all
the opposing forces represented by simplified algebraic expressions.

The plate shear stress is modeled in a similar manner as in previous approaches by the
assumption of a velocity profile in the droplet with zero slip boundary conditions at the top and
bottom walls. A conservative estimate for the shear stress is arrived at by assuming a parabolic
velocity profile which leads to a higher shear stress than that obtained from a linear velocity
profile for the same average velocity. The total shear force exerted by the top and bottom walls is
then obtained as

\[F_w = \left(\frac{6 \mu_v}{d} \right) (2\pi r^2) \] \hspace{1cm} (22)

where \(v \) is the droplet velocity and \(\mu_v \) is the droplet viscosity. The viscous shear due to the filler
fluid is estimated by considering the droplet as a rigid body moving through the filler fluid and
using the correlation for the viscous drag on a cylinder in cross flow:

\[F_f = \left(\frac{1}{2} C \rho_f v^2 \right) (2\pi r) \] \hspace{1cm} (23)

where \(C \) is the drag coefficient for a cylinder in cross flow and \(\rho_f \) is the filler fluid density.
The contact-line friction force is estimated using the approach of Ren et al. [17] where the friction
force is assumed proportional to the droplet velocity.

\[F_{cl} = (\zeta v)(4\pi r) \] \hspace{1cm} (24)

where \(\zeta \) is a proportionality coefficient. From the above equations, it is seen that all the
opposing forces are related to the droplet velocity. The overall equation governing EW-induced
droplet motion is then written as

\[m \frac{d^2x}{dt^2} = F_{act} - F_w - F_f - F_{cl} \] \hspace{1cm} (25)

where \(m \) is the droplet mass.

4.2 Droplet motion results

The above differential equation was solved using MATHEMATICA [23] to obtain the
droplet position and velocity variation with time. The simulations were carried out for a circular
droplet moving to the actuated electrode in the absence of a top plate dielectric. Droplet
properties were taken to be those of water, while the filler fluid was assumed to be silicone oil.
The coefficient \(\zeta \) needed for contact-line friction force estimation was assumed [17] to be
\(\zeta = 0.04 \text{ Ns/m}^2 \). From the actuation force plots in Figure 6, it is observed that the electrical
actuation force is zero at the initial rest position of the droplet. Droplet movement was therefore initiated from rest in the model by displacing the droplet by 1% of the total transition distance, thereby ensuring the presence of a non-zero actuation force to start droplet motion.

![Figure 9. Droplet transition time dependence on voltage and plate spacing (transition distance is 2 mm).](image)

Figure 9 shows the transition time required for a 1 mm radius droplet to move to the actuated electrode as a function of the applied voltage for three plate spacings. The droplet has a finite velocity when it completes the transition. Subsequent droplet motion is determined by the voltage of the electrode adjacent to the actuated electrode in the direction of the droplet velocity. When this adjacent electrode is grounded, the droplet oscillates about the center of the actuated electrode before coming to rest, owing to viscous and contact-line friction induced damping. Under actual experimental conditions, this oscillatory behavior would be difficult to demonstrate, since contact-angle hysteresis is not accounted for in the model. From Figure 9, it is seen that droplet transition times strongly depend on the actuation voltage, which underscores the dominant influence of the voltage on the actuation force. No significant dependence of transition time on the gap spacing is seen, except in the low-voltage, low-velocity regime where a slight decrease in transition time is observed with increased gap spacing. While an increase in gap spacing leads to an increased droplet mass, the opposing viscous forces also change with gap spacing. The net effect is the absence of any substantial dependence of transition time on gap spacing. Average and peak velocities of 7 cm/s and 10 cm/s respectively were obtained for an actuation voltage of 50 V which are comparable to the experimental results of Pollack et al. [5] and the modeling results of Oprins et al. [16].

The model can also be used to study continuous droplet transport over an array of sequentially excited electrodes. In this case, the initial droplet position corresponds to the zero actuation force position, with a finite initial velocity imparted to the droplet. This velocity is determined by applying periodic velocity boundary conditions at the beginning and end of transition. The required transition time so obtained can be used to estimate the electrode switching frequencies needed to sustain a continuous droplet motion. Figure 10 shows the
electrode transition frequencies for a 1 mm radius droplet as a function of the applied voltage. The switching frequencies increase with increasing voltage as a result of faster transitions.

![Graph showing electrode switching frequencies needed to ensure continuous motion of a 1 mm radius droplet over an array of electrodes.](image)

Figure 10. Electrode switching frequencies needed to ensure continuous motion of a 1 mm radius droplet over an array of electrodes.

Droplet radius is an easily controlled parameter and its impact on droplet motion was also investigated. The droplet transition time decreases with smaller droplet radius, but this is primarily the consequence of reduced transition distance (which is equal to the droplet diameter). A change in droplet radius changes the actuation force and the droplet mass by the same proportion; consequently, the transition velocities do not vary significantly. In the present results, the peak droplet velocity increased from 9.15 cm/s to 10.85 cm/s corresponding to a decrease in droplet radius from 1.5 mm to 0.5 mm at 50 V. Droplet velocity is a key parameter which determines the rate of microfluidic operations in lab-on-chip devices, and the present results show that scaling down droplet sizes alone does not yield significantly higher velocities. The actuation voltage plays a much more dominant role in influencing droplet actuation force and thus the droplet velocity.

The opposing forces in the present analysis were modeled using semi-empirical expressions involving fluid properties and the contact-line friction coefficient. The sensitivity of the model results to the values assigned to two such variables is explored next. The effect of varying the contact-line friction coefficient \(\zeta \) and droplet viscosity \(\mu_l \) on the droplet transition time is examined in Figure 11. The two curves in Figure 11 correspond to changing the values of \(\zeta \) and \(\mu_l \), with all other parameters being fixed. The slope of the curve corresponding to varying values of \(\zeta \) shows that the model is sensitive to the value of \(\zeta \) around the value \(\zeta = 0.04 \) Ns/m^2, which has been used in the present work. This underlines the need for using accurate values of \(\zeta \) to obtain reliable results. The sensitivity to droplet viscosity variation is small near the value of \(\mu_l = 0.001 \) Ns/m^2 for a water droplet. Since droplet viscosity is a measure of the wall shear stress, it follows that wall shear is not a dominant force for the droplet movement situation considered here. Another significant ramification of the results in this figure concerns the influence of temperature on droplet movement. The decrease in droplet viscosity with
temperature should by itself not affect droplet motion significantly since the lower viscosity will fall in the viscosity-insensitive regime of the model parameter space. Droplet dynamics is thus governed predominantly by contact-line friction rather than by viscous forces for the situation modeled in this work, which agrees with the observations of Ren et al. [17]. Parametric analyses of this kind are useful in estimating the relative strength of various opposing forces and highlighting phenomena which need more reliable and accurate modeling.

![Transition time dependence on contact-line friction coefficient and droplet viscosity.](image)

Figure 11. Transition time dependence on contact-line friction coefficient and droplet viscosity.

5. Conclusions

An energy-based analysis methodology is developed in this work for modeling electrowetting-based systems. The use and advantages of this analysis approach are demonstrated for performance estimation of such electrowetting-based systems. Analyses based on minimization of system energy can be used to predict overall performance, while circumventing the difficulties in representing the full complexity of all the physical phenomena involved. The origin and the fundamental physics behind EW droplet actuation is explored in detail and extensive parametric variation is employed to arrive at conditions which maximize the EW actuation force. The versatility and convenience of the energy-based model is demonstrated by employing the model to analyze various aspects of the actuation force estimation, including the conditions required to ensure a continuous positive actuation force and the influence of droplet shapes.

The actuation force model is then combined with semi-empirical models for predicting forces opposing droplet motion to yield a simplified model for predicting droplet motion under EW actuation. Various aspects of droplet motion are discussed and parametric variation employed to study the significance of droplet geometry, droplet viscosity and contact-line friction coefficient on droplet motion. It is seen that contact-line friction is a dominant phenomenon for the EW-induced droplet movement situations considered in the available literature. Reliable prediction of droplet motion thus depends on the use of models which ensure accurate prediction.
of contact-line friction. Likewise, contact angle hysteresis needs to be accounted for to predict droplet motion in a more realistic manner.

References

[9] Yi U C and Kim C J 2005 EWOD actuation with electrode-free cover plate 13th Int. Conf. on Solid-State Sensors, Actuators and Microsystems Seoul (South Korea)