Connected Vehicle Concepts

Connected Vehicle Equivalents to Detector Data
- The trajectory view contains all the relevant information.
- Arrival times measured by a setback detector.
- Phase times measured by the local controller.

Sampling Methodology Overview

Connected Vehicle Equivalents to Detector Data
- The trajectory view contains all the relevant information.
- Arrival times measured by a setback detector.
- Phase times measured by the local controller.

Using Connected Vehicle Equivalents to Detector Data
- The trajectory view contains all the relevant information.
- Arrival times measured by a setback detector.
- Phase times measured by the local controller.

Impact of Volume on Accuracy of Subset Profiles at Different Values of Market Penetration P
- Statistical significance (P-value) of Kolsmogorov-Smirnov Tests are shown.
 - p = 50%
 - p = 33%
 - p = 25%
 - p = 12.5%
 - p = 10%

Methodology Overview
- Complete data from measured arrivals was subsampled to develop example Connected Vehicle data for different market penetrations.
- Impact of sample period investigated:
 - T = 15 minutes used for "online" optimization.
 - T = 3 hours used for "offline" optimization.
- 100 different iterations carried out for each market penetration level and sample period.
- Performance of sampled distributions for offset optimization compared by using the resulting settings into the complete-data model.

Connected Vehicle Equivalents to Detector Data
- The trajectory view contains all the relevant information.
- Arrival times measured by a setback detector.
- Phase times measured by the local controller.

Using Connected Vehicle Equivalents to Detector Data
- The trajectory view contains all the relevant information.
- Arrival times measured by a setback detector.
- Phase times measured by the local controller.

Impact of Volume on Accuracy of Subset Profiles at Different Values of Market Penetration P
- Statistical significance (P-value) of Kolsmogorov-Smirnov Tests are shown.
 - p = 50%
 - p = 33%
 - p = 25%
 - p = 12.5%
 - p = 10%

Methodology Overview
- Complete data from measured arrivals was subsampled to develop example Connected Vehicle data for different market penetrations.
- Impact of sample period investigated:
 - T = 15 minutes used for "online" optimization.
 - T = 3 hours used for "offline" optimization.
- 100 different iterations carried out for each market penetration level and sample period.
- Performance of sampled distributions for offset optimization compared by using the resulting settings into the complete-data model.

Connected Vehicle Equivalents to Detector Data
- The trajectory view contains all the relevant information.
- Arrival times measured by a setback detector.
- Phase times measured by the local controller.

Using Connected Vehicle Equivalents to Detector Data
- The trajectory view contains all the relevant information.
- Arrival times measured by a setback detector.
- Phase times measured by the local controller.

Impact of Volume on Accuracy of Subset Profiles at Different Values of Market Penetration P
- Statistical significance (P-value) of Kolsmogorov-Smirnov Tests are shown.
 - p = 50%
 - p = 33%
 - p = 25%
 - p = 12.5%
 - p = 10%
OFFSET-PERFORMANCE CURVES FOR DIFFERENT MARKET PENETRATIONS

Offline Optimization
- T = 3 Hours
- Curves are very similar even for p = 1%
- Opportunity at low levels of market penetration

Online Optimization
- T = 15 Minutes
- Curves are very similar for p = 10%
- The p = 1% curve is not very accurate
- Opportunity at moderate levels of market penetration

Extended Offline Optimization
- T = 9 Hours (3 Hours over Three Days)
- Curves are very similar even for p = 0.1%
- Opportunity at very low levels of market penetration

SENSITIVITY OF OFFSET OPTIMIZATION OUTCOMES TO MARKET PENETRATION RATE

Offline Optimization
- T = 3 Hours
- All solutions were better than existing offsets at p = 5%
- Over 75% of solutions were better than existing offsets at p = 1%
- Not viable beneath p = 1%

Online Optimization
- T = 15 Minutes
- All solutions were better than existing offsets at p = 50%
- Over 75% of solutions better than existing offsets at p = 10% and p = 5%
- Not viable beneath p = 5%

EXAMPLE REAL-WORLD CONNECTED VEHICLE TRAJECTORY DATA

Southbound, SR 37, Fishers, IN
- p = 0.8%

Northbound, SR 37, Fishers, IN
- p = 0.6%

OVERVIEW OF RESULTS
- Solution quality varied with market penetration as expected.
- Opportunities for detector-free offset optimization exist at relatively low levels of market penetration:
 - For "online" optimization (T = 15 min), p = 5% may be viable
 - For "offline" optimization (T = 3 hr), p = 1% may be viable
 - Layering multiple days of data might make even lower rates viable
- Some example real-world data shown in poster. The equivalent level of penetration is approximately 0.6–0.8%.
- Primary barrier to implementation will likely be time synchronization between data sets.