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Abstract 

In this paper, we propose a new exact closed form mutual inductance equation for on-chip interconnects. We 

express the mutual inductance between two parallel rectangular conductors as a weighted sum of self-inductances. 

We do not place any restrictions on the alignment of the two parallel rectangular conductors. Moreover, they could 

be co-planar or reside on different layers. Most important, detailed study shows that our formula is numerically more 

stable than that derived in [2] for practical cases of modem on-chip interconnects. 



1 Introduction 

In modern VLSI design, it is prudent that inductance effect be considered in the timing and noise analysis of on-chip 

global interconnects. The concept of inductance is defined based on the magnetic fields caused by currents flowing 

through closed conductor loops. For general three-dimensional interconnects, however, the return paths of currents are 

distributed and not known a priori. An approach that obviates the need for prior knowledge of ireturn paths in circuit 

simulation is the use of the partial element equivalent circuit (PEEC) model [6]. In this model, partial inductances 

are defined to represent the loop interactions among conductors, each forming its own return lloop with infinity. In 

the following discourse, we use mutual inductance to refer strictly to partial mutual inductance and self-inductance to 

refer strictly to partial self-inductance. 

In this paper, we derive the exact closed form formula for the mutual inductance of two parallel conductors; for 

two wires orthogonal to each other, the mutual inductance is zero. Exact formulas for the mutual inductance of two 

parallel conductors are available For example, the mutual inductance between two parallel filaments with length 1 and 

spacing d is given by the following exact formula [5]: 

If d << 1 ,  a simpler approximate formula can be obtained through Taylor's expansion [I]: 

If the length is not sufficiently larger than the distance, the accuracy could be affected. When that happens, Eqn. (2) is 

not a good approximation of Eqn. (1). 

For two conductors with the cross-sectional dimensions comparable to their distance, which is typical of on-chip 

interconnects, they cannot be treated as filaments. In this case, the geometry mean distance (CiMD) should be used 

in Eqn. (2) instead of d .  Althoug exact formula for GMD of two rectangular area exists, it is c;ommon that only an 

approximation is used. In [I], pre-computed tables are used to obtain GMD. In [7], table-lookup and summation are 

used to calculate the GMD of two wires. 

One major shortcoming of Eqns. (1) and (2) is that they do not apply to more general cases; the parallel conductors 

must be of the same length and their end points aligned. There are techniques that can be deployed to overcome this 

shortcoming [4]. 

In [2], the authors derived a closed form formula for the mutual inductance of any pair of parallel rectangular 

conductors even if they are not aligned. The formula is given below: 

where w l ,  w2, and w3 are the widths and the distance between the two lines in the x-direction; t l ,  t2, and t3 are the 



thicknesses and the distance in the y-direction; 11, 12, and l3 are the lengths and the offset in the z-direction; and 

The exact expression off (X, Y,Z)  can be found in [2]. Unfortunately, the computation of the exact formula in Eqn. (3) 

is numerically unstable (see Section 6 for the numerical results). 

Consider the special case when we calculate the mutual inductance between two identical conductors that coincide 

with each other, we obtain the self-inductance. The closed form formulas for self-inductance in [2,6,  81 are derived in 

this fashion. However, the formulas in [6, 81 are numerically more stable than the formula given in [2]. 

In this paper, we reveal the inverse relation between mutual inductance and self-inductance, that is, the mutual 

inductance can be expressed in terms of self-inductance. To be more specific, the mutual inductance of on-chip 

interconnects is a weighted sum of self-inductances. Just like Eqn. (3), we do not impose any restrictions on the 

alignment of the two parallel rectangular conductors. Moreover, the formula applies to co-planar wires or wires 

residing on different layers. Most important, it is exact and numerically stable for practical cases of modern on-chip 

interconnects. We also derive for special cases of parallel conductors that are commonly encountered among on-chip 

interconnects closed form formulas that are even more compact. Detailed study in Section 6 shows that our formula is 

numerically more stable than Eqn. (3) derived in [2]. 

2 Preliminaries 

The mutual inductance between two conductors with uniform cross sections is 

where A. and A1 are the cross-sectional areas of the two conductors. lo, 11, Jo and J1 are the current and the current 

densities of the conductors. Mol is the mutual inductance between two filaments dAo and dill, and the current is 

assumed to be constant along the the length of each filament. 

At relatively low frequency, the current distribution varies very little in the cross sections and can be assumed to 

be constant throughout the conductors. Hence, the mutual inductance can be reduced to the following equation: 

As indicated by the preceding equation, the mutual inductance is determined only by the geometries of the two 

conductors. Under magneto-quasistatic condition, the mutual inductance between two filaments Lo and L1 can be 

calculated by Neumann's formula: 



Figure 1: Two parallel wires. 

where r is the distance between dlo and dll and p is the permeability. 

Consider two parallel rectangular wires as ilustrated in Figure 1. Here, we assume that the current flows in the z 

direction. As can be seen in the figure, the displacements of the two wires along the x and y directions are non-zero. 

Let the cross-sectional dimensions (in the x - y plane) of the two wires be To x Wo and TI x Wl . VVe use pi,,j>k and qi,j,k, 

i, j ,k  {0,1), to denote the corners of the two wires, as illustrated in Fig 1 .  All comer points of the first wire has two 

z coordinate values. We use zp,, k  E ( 0 ,  l ) ,  to denote the z coordinate value shared by the cornen p,,,,k. Similarly, we 

use z,,, k E (0 ,  I), to denote the z coordinate value shared by the corners q,,,,k of the second wnre. Similarly defined 

are the x and Y-coordinate values of the corners of the two wires: xpi and xqi, i E { O , l ) ,  and ypj and yqj, j E { O , l ) .  

Now, substituting Eqn. (6) into Eqn. ( 5 ) ,  we obtain 

If the two conductors coincide with each other, then the preceding mutual inductance equation gives the equation 

for the self-inductance of one conductor: 

3 Formula for Mutual Inductance 

In the following, we reveal the relation between mutual inductance and self-inductance, and then derive a closed form 

formula for the mutual inductance as a weighted sum of self-inductances. 



current / direction 
Figure 2: A virtual conductor defined by two corner points. 

It is trivial to show that for any function f ( x ) ,  

Making use of Eqn. (9), we can rewrite Eqn. (7) as follows: 
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(10) 

Note that the six-fold integration in Eqn. (10) is simply Eqn. (8), the formula for the self-induct,ance of a rectangular 

conductor defined by its two diagonal corner points pi ,,,,,,, k,, and qi ,,,,, k , ,  i o , i l ,  jo, j l ,  ko, kl E {O., 11, as illustrated in 

Figure 2. The indices io, jo, and ko of pi ,,,,,,, $, identify a corner of the first wire (see Figure 1). Sim.ilarly, qi ,,,,, k ,  is one 



of the eight corner points of the second wire. Altogether, the corner points of the first wire and slzcond wire defines 64 

virtual wires, each defined by a corner point from the first wire and a corner point from the second wire. 

Let L~il,.jo,q,>4il,jl .il., refer to the self-inductance of a rectangular conductor with two points fi,,,,~,,k,, and qil , j l  ,k l  on 

the diagonal ends, and APi,,,,~l,kn,qil,jl,kI denote the cross-sectional area of the conductor. Substituting Eqn. ( 8 )  into 

Eqn. (10)  yields 

In other words, the mutual inductance of two parallel wires is a weighted sum of the self-inductances of the 64 

virtual wires defined by the two wires, the weight of each self-inductance being +A2 or -A2. I n  some cases, pin,,jn,~ 

and qi, ,i,,k, may share one or more coordinate values, resulting in one or more dimensions in the defined virtual 

conductor being zero. The self-inductance of such a virtual conductor is infinite. However, the cross-sectional area 

A of such a virtual conductor is zero. As of such a virtual conductor approaches zero faster than the inductance 

approaches infinity, the multiplication in Eqn. ( 1  1 )  is zero. Therefore, the equation is still valid in this special case. In 

fact, this equation is valid for any two parallel conductors that have rectangular cross sections. 

The remaining issue is the computation of the self-inductances. In [2,  6 ,  81, closed form formulas for the self- 

inductance of a rectangular conductor are derived. Although the formulas are symbolically equivalent, the closed-form 

formulas from [6,  81 are numerically more stable. The closed-form formula for the per-unit-length self-inductance of 

a rectagular conductor of length I ,  thickness T ,  and width W is as follows [8]:  

L - - 
2 p 1 1  w 1 t 1 1 t2 W w2 t  
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( a r + r + t + a t ) t 2  

6 w t  a, w tar  t  war  6 0 ( a r + r ) ( r + t ) ( t + ~ ) ( a t + a r i C  

( a r + r + w + a , ) w 2  + ( a r + a , + l + a t )  
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I 

1 1  --[- 1 1 +- + - 1 )  
20 r + a ,  a,+a, at+ar 

(12) 

where w = W / 1 ,  t = T / l ,  r  = d m ,  a, = d m ,  cq = m, a, = d-, S(X)  == sinh-'(x) = ln(x+ 

d m ) ,  T ( x )  = tanP1(x). In this work, we compute self-inductances using Eqn. (12).  

4 Special Cases 

Eqn. ( 1  1 )  is valid for any two conductors that are rectangular and parallel. Here, we can consider such special cases as 

two identical conductors that are parallel and properly aligned as shown in Figure 3. The width of the wires is w and 

the spacing between the two wires is s. In such a case, only three distinct integrations (out of a total of 64 in Eqn. ( 1  I ) )  



Figure 3: Two parallel conductors that are aligned. 

Figure 4: Two coaxial conductors 

remains after eliminating those that are equal to zero. The formula for mutual inductance can be simplified as 

where Lw represents the self-inductance of a rectangular conductor with width W. 

Consider another special case where two conductors with identical cross section are coaxial, as shown in Figure 4. 

Let the lengths of the two conductors be lo and ll .  The distance between the two closest end points of the conductors 

is s. The exact formula for the mutual inductance between the two conductors can be simplified .as 

where Ll is the self-inductance of a conductor with length 1. 

Now, consider the special case where the two conductors are identical and they coincide with each other. In this 

case, only eight of the 64 integrations deal with virtual conductors with non-zero cross-sectionla1 areas and lengths. 

Moreover, these virtual conductors are identical to the conductor of interest. Therefore, the mutual inductance between 

the two conductors is 

M = -  (8AL) = L. 
8WT (15) 
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That coincides with the definition of self-inductance of the conductor. 

5 Skin Effect and Other Considerations 

In the preceding derivations, we assume that the current distribution is uniform in the cross section of the conductor. 

In other words, we ignore the skin effect. Theoretically, the current in the a conductor is not uniformly distributed due 

to skin effect. However, for relatively low frequency, it is reasonable to ignore the skin effect on current distribution 

and assume that the current distribution is purely determined by the resistive effect and is thus uniform. For modern 

global interconnects, it is still safe to ignore skin effects even when the frequency is as high as :LOGHz. For example, 

the difference between the inductance values at 1Hz and IOGHz of copper wires with cross-sectional dimensions of 

0.5pmx 1pm is less than 0.01%. 

For cases where the skin effect cannot be ignored, we can divide the cross section of a conductor into a mesh 

and then apply the formula to each element. If the resulting inductance matrix is too large, reduced order modeling 

technqiues can be applied. 

It is worthy of note that the result of mutual inductance is a weighted sum of the self-inductance of 64 rectangular 

virtual wires. Some virtual wires may be too large to be realistic or so large we should consider skin effect. However, 

it is important to realize that they constitute only the intermediate results. The validity of the final result depends on 

the structures of the two real wires, not these virtual wires. 

The exact formula we derived in the preceding three sections apply only to parallel rectangular conductors. If the 

structures of the wires are complex, the formula may not apply directly. However, if they can be decomposed into 

rectangluar conductors that are parallel or orthogonal to each other, we can still apply this formula to each pair of 

conductors and obtain the total inductance value according to the PEEC model. 

6 Numerical Results 

In this section, we compare the numerical results obtained by our formula with those obtained by the formula in [2]. 

Eqn.( 3) is also a result of 64 experssions. However, the function f (X, Y , Z )  (see [2] for details) in this expression is 

different from the product of the square of cross-sectional area and self-inductance in our formula. In Figure 5, we 

obtain the mutual inductance of double precision between two wires with cross-sectional dimensions of 0.5pmx 1pm. 

They are 1.5pm apart. The plots in Figure 5(a) and Figure 5(b) are respectively obtained with the formula from [2] 

and our formula. It is evident that the results from [2] is numerically less stable than those obtained with our formula; 

the mutual inducance should increase smoothly as wire length increases. 

The numerical results obtained with the formula from [2] significantly improve if we increase the precision level 

from double to long double. The plots in Figure 6(a) and Figure 6(b) are respectively obtained with the formula 

from [2] and our formula using long double precision. 

However, even increasing the level of precision has its limitation. In Figure 7, we obtain the rnutual inductance of 



Figure 5: Mutual inductance of double precision extracted with (a) the formula from [2] and (b) our formula for two 
wires with a fixed spacing of 1.5pm but varying lengths. 
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Figure 6: Mutual inductance of long double precision extracted with (a) the formula from [2] and (b) our formula for 
two wires with a fixed spacing of 1.5pm but varying lengths. 
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Figure 7: Mutual inductance of double precision extracted with (a) the formula from [2] and (b) our formula for two 
wires with an identical length of 200pm but varying spacings. 

double precision between two wires with cross-sectional dimensions of 0.5pmx lpm. They are both of length 200pm. 

Now, we vary the spacing between the two conductors. Again, it is evident that the results from [2] is numerically less 

stable than those obtained with our formula; the mutual inducance should decrease smoothly as wire spacing increases. 

Even when we increase the level of precision to long double (Figure 8), the numerical results of the formula from [2] 

are still unacceptable when compared with those obtained with our formula. 

We also validate the numerical results obtained with our formula with those from FastHenry (DC analysis) [3]. 

The inductance values for the two sets of parallel conductors are plotted in Figure 9(a) and Figure 9(b). For most 

cases, our approach and that of FastHenry produce the same results for most realistic cases of modern interconnects. 

Only for a few cases are the discrepancies noticeable. 

Conclusion 

In this paper, we proposed a new closed form formula for on-chip mutual inductance. It is an exact formula that is 

practical and convenient for on-chip inductance extraction. Most important, it is numerically stat~le for practical cases 

of modern on-chip interconnects. 
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