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Abstract

In this paper, we propose a new exact closed form mutual inductance equation for on-chip interconnects. We
express the mutual inductance between two parallel rectangular conductors as a weighted sum of self-inductances.
We do not place any restrictions on the alignment of the two parallel rectangular conductors. Moreover, they could

be co-planar or reside on different layers. Most important, detailed study shows that our formulais numerically more

stable than that derived in[2] for practical cases of modem on-chip interconnects.




1 Introduction

In modern VL SI design, it is prudent that inductance effect be considered in the timing and noise analysis of on-chip
global interconnects. The concept of inductance is defined based on the magnetic fields caused by currents flowing
through closed conductor loops. For general three-dimensional interconnects, however, the return paths of currents are
distributed and not known a priori. An approach that obviates the need for prior knowledge of return pathsin circuit
simulation is the use of the partial element equivalent circuit (PEEC) model [6]. In this model, partial inductances
are defined to represent the loop interactions among conductors, each forming its own return loop with infinity. In
the following discourse, we use mutual inductance to refer strictly to partial mutual inductance and self-inductance to
refer strictly to partial self-inductance.

In this paper, we derive the exact closed form formula for the mutual inductance of two parallel conductors; for
two wires orthogonal to each other, the mutual inductance is zero. Exact formulas for the mutual inductance of two
parallel conductors are available For example, the mutual inductance between two paralléel filaments with length 1 and

spacing d is given by the following exact formula[5]:

ul i\/ 2 \/ a2 d
_2n[ln(d+ 1+d2) 1+12+1] 1

If d </, asimpler approximateformula can be obtained through Taylor's expansion [1]:

1. 2l
= g—n[ln(g)— 1]. @)

If the length is not sufficiently larger than the distance, the accuracy could be affected. When that happens, Eqn. (2) is
not a good approximation of Eqn. (1).

For two conductors with the cross-sectional dimensions comparable to their distance, which is typical of on-chip
interconnects, they cannot be treated as filaments. In this case, the geometry mean distance (GMD) should be used
in Egn. (2) instead of d. Althoug exact formula for GMD of two rectangular area exists, it is common that only an
approximationis used. In [1], pre-computed tables are used to obtain GMD. In [7], table-lookup and summation are
used to calculate the GMD of two wires.

One mgjor shortcoming of Eqgns. (1) and (2) isthat they do not apply to moregeneral cases; the parallel conductors
must be of the same length and their end points aligned. There are techniques that can be deployed to overcome this
shortcoming [4].

In [2], the authors derived a closed form formula for the mutual inductance of any pair of parallel rectangular

conductorseven if they are not aligned. Theformulais given below:

— X=w3,witwrt+w3 VY =t3,01 +to+31Z=l3-11 3+
M= w1W2t1t2[[[f(X Y Z) - W1’+W3,W2+W3] —‘l+‘31‘2+‘3]z—l3+12—11713’ 3)

where wy, wy, and ws are the widths and the distance between the two lines in the x-direction; ¢, t», and 3 are the



thicknesses and the distance in they-direction; [y, I, and I3 are the lengths and the offset in the z-direction; and
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Theexact expression off (X,Y,Z) can befound in [2]. Unfortunately, the computation of theexact formulain Eqgn. (3)
is numerically unstable (see Section 6 for the numerical results).

Consider the special case when we calculate the mutual inductance between two identical conductors that coincide
with each other, we obtain the self-inductance. Theclosed form formulasfor self-inductancein [2, 6, 8] arederived in
this fashion. However, theformulas in [6, 8] are numerically more stable than the formula given in [2].

In this paper, we reveal the inverse relation between mutual inductance and self-inductance, that is, the mutual
inductance can be expressed in terms of self-inductance. To be more specific, the mutual inductance of on-chip
interconnects is a weighted sum of self-inductances. Just like Egn. (3), we do not impose any restrictions on the
alignment of the two parallel rectangular conductors. Moreover, the formula applies to co-planar wires or wires
residing on different layers. Most important, it is exact and numerically stable for practical cases of modern on-chip
interconnects. We also derive for special cases of parallel conductors that are commonly encountered among on-chip
interconnectsclosed form formulas that are even more compact. Detailed study in Section 6 shows that our formulais

numerically more stable than Eqgn. (3) derived in [2].

2 Prdiminaries

The mutual inductance between two conductors with uniform cross sectionsis

1
= / MorJoJ1dAedAy, @)
Il Jag Ja,

where Ag and A are the cross-sectional areas of the two conductors. Iy, I;, Jo and J; are the current and the current
densities of the conductors. Mg is the mutual inductance between two filaments dAg and dA;, and the current is
assumed to be constant along the the length of each filament.

At relatively low freguency, the current distribution varies very little in the cross sections and can be assumed to

be constant throughout the conductors. Hence, the mutual inductance can be reduced to the following equation:

= — Mo1dAgdA;. 5
A0A1/AOA1 o1dAodA; (5)

Asindicated by the preceding equation, the mutual inductance is determined only by the geometries of the two

conductors. Under magneto-quasistatic condition, the mutual inductance between two filaments Ly and L; can be

H dly-dl,
My=-— — 6
/ 411:_/[4,/L1 r’ ©)

calculated by Neumann's formula:
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Figure 1: Two parallel wires.

wherer is the distance between dlp and di; and u isthe permeability.

Consider two parallel rectangular wires as ilustrated in Figure 1. Here, we assume that the current flows in the z
direction. As can be seen in the figure, the displacements of the two wires along the x and y directions are non-zero.
Let the cross-sectional dimensions (in thex — y plane) of thetwo wiresbe To X Wo and 73 x W1, We use Pijkand g,
i,j,k € {0,1}, to denotethe corners of the two wires, asillustrated in Fig 1. All comer points of the first wire hastwo
z coordinate values. We use zp,, k € {0,1}, to denote the z coordinate value shared by the corners p. « x. Similarly, we
usez,,, k € {0,1}, to denote the z coordinate value shared by the corners g«,« x of the second wire. Similarly defined
arethex and y-coordinate valuesof the corners of the two wires: x,; and x,;, i € {0,1}, and yp; and y,;, j € {0,1}.

Now, substituting Egn. (6) into Eqn. (5), weobtain
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If the two conductorscoincide with each other, then the preceding mutual inductance equation gives the equation

for the self-inductance of one conductor:

=2 41:////[/ —dzodz1dyody1dxodx). (8)

3 Formulafor Mutual Inductance

Inthefollowing, wereveal therelation between mutual inductance and self-inductance, and then derive a closed form

formulafor the mutual inductance as a weighted sum of self-inductances.
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Figure 2: A virtual conductor defined by two corner points.

Itistrivia to show that for any functionf (x),
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Making use of Eqgn. (9), we can rewrite Eqn. (7) asfollows:
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(10)

Notethat the six-foldintegration in Eqn. (10) issimply Eqn. (8), theformulafor the self-inductance of arectangular
conductor defined by its two diagonal corner points pi, jyk, ad gi, ji x;» 0,41, jo, ji,k0,k1 € {0,1}, asillustrated in

Figure 2. Theindices iy, jo, and ko of p,_ j, &, identify acorner of thefirst wire (see Figure 1). Similarly, g;, ;, «, iSOne



of the eight corner points of the second wire. Altogether, the corner points of thefirst wire and second wire defines64
virtual wires, each defined by acorner point from thefirst wireand a corner point from the second wire.

Let Ly, jy40i1.514, refer to the self-inductance of a rectangular conductor with two points Pio,joko A qiy i) g, ON

the diagonal ends, and A denote the cross-sectional area of the conductor. Substituting Egn. (8)into

Egn. (10)yields

Pigyjo ko iy Jy k1

1
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In other words, the mutual inductance of two paralel wires is a weighted sum of the self-inductances of the 64
virtual wires defined by the two wires, the weight of each self-inductance being +A% or — A2, | n some Cases, Piq,jo 4o
and g;, ;, x, may share one or more coordinate values, resulting in one or more dimensions in the defined virtual
conductor being zero. The self-inductance of such a virtual conductor is infinite. However, the cross-sectional area
A of such avirtual conductor is zero. AsA? of such a virtual conductor approaches zero faster than the inductance
approaches infinity, the multiplication in Eqn. (11) is zero. Therefore, the equation is still valid in this special case. In
fact, thisequation is valid for any two parallel conductorsthat have rectangular cross sections.

The remaining issue is the computation of the self-inductances. In [2,6, 8], closed form formulas for the self-
inductance of arectangular conductor arederived. Although theformulas are symbolically equivalent, the closed-form
formulas from [6,8] are numerically more stable. The closed-form formulafor the per-unit-length self-inductance of

arectagular conductor of length {, thickness T , and widthW is asfollows [8]:

L 2u,1,1 w1 t 1 1 ¢ w w2 t

[ = FGESGE)+iS(E)+ S+ #sGarra) T T e Fay)
t2 W2 W2 t2 1 wi2 1 tw2
7 Staro) T et e ata o) e aw ta)
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bt O T ) T TG - sl s G F o) @ T o)
(ar+r+w+a,)w? + (O + Cy + 1 4+ 0ty)
(0 +r)(r+w)(w+a) (0w +0r) (o, + o) + 1) (04 + 1) (04 + o))
1 1 1 1
+ D (12)
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wherew =W/l t=T/L,r =vw2 +12, 0, = VW2 + 1, 0t = V12 + 1, &, = Vw2 + 12+ 1, §(x) = sinh ™! (x) = In(x +
V1 +x2), T(x) = tan"!(x). In this work, we compute self-inductances using Eqn. (12).

4 Special Cases

Eqgn. (11)isvalid for any two conductorsthat are rectangular and parallel. Here, we can consider such special casesas
two identical conductorsthat are parallel and properly aigned as shown in Figure 3. The width of the wires isw and

the spacing between thetwo wiresiss. In such acase, only three distinct integrations (out of atotal of 64 in Eqn. (11))
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Figure 3: Two parallel conductors that are aligned.
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Figure4: Two coaxia conductors

remains after eliminating those that are equal to zero. The formulafor mutual inductance can be simplified as

1
M= m[(2w +5)2Lyps + 82 Ls — 2(W 4+ 5)?Liyts], (13)

where Ly represents the self-inductanceof a rectangular conductor with width W.
Consider another special case where two conductors with identical crosssection arecoaxial, asshown in Figure 4.
L et the lengths of the two conductors be /y and /;. The distance between the two closest end points of the conductors

iss. The exact formulafor the mutual inductance between the two conductors can be simplified .as

1
M = 5 [Ll()-\-s-l-ll - Ll[)+s - Ll] +5 + LS]7 (14)

where L, is the self-inductance of a conductor with length 1.

Now, consider the special case where the two conductors are identical and they coincide with each other. In this
case, only eight of the 64 integrations deal with virtual conductors with non-zero cross-sectionlal areas and lengths.
Moreover, these virtual conductorsareidentical to the conductor of interest. Therefore, the mutual inductance between
the two conductors is

1
M=W(8AL)=L. (15)



That coincides with the definition of self-inductance of the conductor.

5 Skin Effect and Other Congderations

In the preceding derivations, we assume that the current distribution is uniform in the cross section of the conductor.
In other words, we ignore the skin effect. Theoretically, the current in the aconductor is not uniformly distributed due
to skin effect. However, for relatively low frequency, it is reasonable to ignore the skin effect on current distribution
and assume that the current distribution is purely determined by the resistive effect and is thus uniform. For modern
global interconnects, it is still safe to ignore skin effects even when the frequency is as high as 10GHz. For example,
the difference between the inductance values at 1Hz and 10GHz of copper wires with cross-sectional dimensions of
0.5umx lum isless than 0.01%.

For cases where the skin effect cannot be ignored, we can divide the cross section of a conductor into a mesh
and then apply the formula to each element. If the resulting inductance matrix is too large, reduced order modeling
techngiues can be applied.

Itisworthy of note that the result of mutual inductanceisaweighted sum of the self-inductanceof 64 rectangular
virtual wires. Some virtual wires may betoo large to beredlistic or so large we should consider skin effect. However,
itisimportant to realize that they constitute only the intermediate results. The validity of the final result depends on
thestructures of the two real wires, not these virtual wires.

The exact formula we derived in the preceding three sections apply only to parallel rectangular conductors. If the
structures of the wires are complex, the formula may not apply directly. However, if they can be decomposed into
rectangluar conductors that are parallel or orthogonal to each other, we can still apply this formula to each pair of

conductors and aobtain the total inductance value according to the PEEC model.

6 Numerical Reaults

In this section, we compare the numerical results obtained by our formulawith those obtained by the formulain [2].
Eqn.( 3) isaso aresult of 64 experssions. However, the function f (X,Y,Z) (see [2] for details) in this expression is
different from the product of the square of cross-sectional area and self-inductance in our formula. In Figure 5, we
obtain the mutual inductance of double precision between two wires with cross-sectional dimensions of 0.5umx 1um.
They are 1.5um apart. The plots in Figure 5(a) and Figure 5(b) are respectively obtained with the formulafrom [2]
and our formula. It isevident that the resultsfrom [2] is numerically less stable than those obtained with our formula;
the mutual inducance should increase smoothly as wire length increases.

The numerical results obtained with the formulafrom [2] significantly improve if we increase the precision level
from double to long double. The plots in Figure 6(a) and Figure 6(b) are respectively obtained with the formula
from [2] and our formula using long double precision.

However, even increasing the level of precision hasits limitation. In Figure 7, we obtain the mutual inductance of
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Figure 7: Mutual inductance of double precision extracted with (a) the formulafrom [2] and (b) our formulafor two
wires with an identical length of 200um but varying spacings.

double precision between two wires with cross-sectional dimensions of 0.5umx |pm. They areboth of length 200um.
Now, we vary the spacing between the two conductors. Again, itisevident that theresults from [2] is numerically less
stabl e than those obtai ned with our formula; the mutual inducance should decrease smoothly as wire spacing increases.
Even when we increase the level of precision to long double (Figure 8), the numerical results of the formulafrom [2]
are till unacceptable when compared with those obtained with our formula.

We also validate the numerical results obtained with our formula with those from FastHenry (DC analysis) [3].
The inductance values for the two sets of parallel conductors are plotted in Figure 9(a) and Figure 9(b). For most

cases, our approach and that of FastHenry produce the same results for most realistic cases of modern interconnects.
Only for a few cases are the discrepancies noticeable.

Concluson

In this paper, we proposed a new closed form formula for on-chip mutual inductance. It is an exact formula that is
practical and convenient for on-chip inductance extraction. Most important, it is numerically stable for practical cases

of modern on-chip interconnects.

References

[1] E Grover. Inductance Calculations: Working formulasand Tables. Dover, New Y ork, 1962.

[2] C.HoerandC. Love. Exactinductanceequationsfor rectangular conductorswith applicationsto morecomplicated
geometries. Journal of Research of the National Bureau of Sandards, 69C(2):127-137,April-June 1965.



10

1.2e-10 T —T T — T T T T T 1.2e-10
le-10Q | -
1e-10
Be-11 4
Be-11
6o-11 |
T T
= = Be-11
g 40-11 | e
s I 2
E] i s
£ -1 B 3
2 2e11 1 T dett
\ =
S
ok —
\‘ 2e-11
-2e-11
o
-de1
Bo-11 . s i L — P P 2e-11
] 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Distance (um)

(@

T T T —T T T —r T
|
R
i
|
\
e
LT — —
M ' L . 2 2 N —
] 2000 4000 €000 8000 10000 12000 14000 16000 18000 20000
Distance {umn)

(b)

Figure 8: Mutual inductance of long double precision extracted with (a) the formulafrom [2] and (b) our formula of

two wires with an identical length of 200um but varying spacings.

40-08 1.2e-10
35008 [
1e-10
3e-08 [
Bo-11
2.5e-08 [
£ £
@ ®
g 20-08 [ g Ge-11
] ]
2 4
£ £
1.50-08
4e-11
1e-08 [
2e-11
5e-09
-~ ) 0
] 2000 4000 6000 BOW 10000 12000 14000 18000 18000 20000

‘Wire Length (um)

(@

— T T T T
: 4
i
4
4
L o
\
AN
NG
A
P i
o 1000 2000 3000 4000 5000 6000

Distance {um}

(b)

Figure 9: Mutual inductance extracted with FastHenry (DC analysis) of (a) two wires of afixed spacing of 1.5um but
varying lengths and (b) two wires of an identical length of 200um but varying spacing.



11

[3] M. Kamon, M. J. Tsuk, and J. K. White. FASTHENRY: A multipole-accelerated 3-D inductance extraction
program. |EEE Journal on Microwave Theory and Techniques, 42(9):1750-1758, September 1994.

[4] X.Qi, G.Wang, Z. Yu, R. W. Dutton, T. Yong, and N. Chang. On-chip inductance modeling: and rlc extraction of
vlsi interconnects for circuit simulation. In IEEE custom integrated circuits conference, pages 487-490, 2000.

[5] A.J. Rainal. Computing inductive noise of chip packages. ATT Bell Lab. Tech. J., 63(1):177-195, January 1984.

[6] A.E.Ruehli. Inductance calculationin acomplex integrated circuit environment. IBM Journal of Research and
Development, pages470—481, September 1972.

[7] K. L. Shepard and Z. Tian. Return-limited inductances:a practical approach to on-chip inductance extraction.
|EEE Trans. on Computer-Aided Design of Integrated Circuitsand Systems, 19:425-436, April 2000.

[8] Ruey-Beei Wu, Chien-Nan Kuo, and Kwei K. Chang. Inductance and resistance computations for three-
dimensional multiconductor interconnect structures. |EEE Trans. on Microwave Theery and Techniques,
40(2):263-270, February 1992.



	Purdue University
	Purdue e-Pubs
	10-1-2001

	Exact Closed Form Fom~ulafo r Partial Mutual Inductances of On-Chip Interconnects
	Guoan Zhong
	Cheng-Kok Koh


