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A THREE-STAGE SAl-1PLING MODEL 

FOR REMOTE SENSING APPLICATIONS 

by 

Ludwig M. Eisgruber 

PART 1: CONCEPTUAL MODEL 

1.1. PROBLEM DEFINITION 

Large-scale applications of remote sensing for the purpose of preparing 
crop estimates, natural resource inventories, disaster assessments, etc. for 
a given geographic region will, in general, involve questions of sampling, since 
complete coverage of the total geographic region and subsequent analysis of data 
collected with complete coverage appear technically and economically infeasible. 
This is true regardless of whether an aircraft, or a satellite is involved, and 
it applies equally to photography. multispectral measurements, radar, etc. ThU::l, 
even if remote sensing provided completely accurate_ data, estimates (of crop 
acreage, natural resources, extent of disaster, etc.) for the total region under 
study will be subject to an error, the so-called error of estimate. This error 
arises due to the fact that inferences based on selected observations within 
the region are drawn regarding the characteristics of the total region. 

It is the purpose of this discussion to present a conceptual model (in 
Part 1) and an empirical application (in Part 2) of the relationship between 
the manner of selecting observations (i.e. the sampling scheme) and its effect 
on the precision of estimates (i.e. the magnitude of the error of estimate) 
from remote sensing. Because of technical and practical considerations, a 
sampling scheme which suggests itself as being useful is a three-stage sampling 
scheme. 1/ The first stage in this scheme is flightlines, the second stage 
is segme~ts within flightlines. and the third is units within segments. In 
general, it can be expected that the various stages contribute differentially 
to the error of estimate. Also, the contribution from the various stages to 
the error of estiw~te is affected by the number of observations in each of 
the stages (i.e. the sUbsampling ratios). For instance, an increase in the 
number of flightlines to be analyzed may be both costly and difficult to execute 
but decrease the variance of the overall estimate little. On the other hand, 

1/ The statistical concepts presented here are not new (cf [1] and [2]). 
They are merely adapted to the problem of remote sensing appllclltiollH. 
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an increase in the number of segments per flightline may increase costs and 
difficulties of analysis little but may have considerable influence on the 
precision of the estimate. Thus, an arbi~rary mix of number of flightlines, 
segments within flightlines, and units within segments may result in high costs 
of operation as well as poor estimates. An understanding of the effect of sub­
sampling ratios on the precision of estimates is, therefore, important for 
most remote sensing applications, particularly those of large scale. 

1.2. PROBLEM CHARACTERISTICS AND ASSUMPTIONS 

It is assumed that remote sensing is used to estimate a population 
characteristic (such as acres of a particular crop) in a well-defined geographic 
region. The flightlines are assumed to be of equal length. Similarly, seg­
ments ~/ within each flightline are of equal size, units within each segment 
are of equal size, and there is an equal number of units in each segment an an 
equal number of segments within each flightline. Flightline locations are 
random wiLhin the region, as are segment locations within the flightlines and 
unit locations within the segments.3/ 

Finally, if a measurement error is present, it is assumed to be constant 
and/or is random, normally arid independently distributed with a mean zero and 
a standard deviation of cre • 

1.3. THE VARIANCE MODELS. 

In order to ahcieve our objective of investigating the effect of subsampling 
ratios on the precision of estimates from .. remote sensing, it is necessary to 
develop the variance of the estimate in question. We shall do so for both 
measurement (continuous) and attribute (binomial) data. But first we shall dis­
cuss the question of how the measurement error affects the variance. 

J:j A "segment" is a sampling unit of specific size (i.e. 1 mile by 10 
miles) within a flightline. 

}j If "ground observations"are used to "train" the computer or photo­
interpreter, it is assumed to be given. That is to say t a certain 
classification accuracy is assumed, and the relationship of the amount 
of ground truth to training, and the level of training to precision 
of estimates are not expli~itly considered in the statistical model 
to be presented. ) 
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1.3.1. The Measurement Error 
i 

In remote sensing measurement errors are encountered due to deficiencies 
in the measuring device, deficiencies in data analysis, etc. Thus, the variance 
estimates should include a measurement error component. 

Let us assume that the relevant mathematical model for the measurement error 
present in the system under study is 

(1.3.1) Yia = Gi + gi + e ia 

Where Yia value of item obtained in the ath repeti tion, = 

G
i = true value of the item, 

gj. = constant bias, 

e
ia = random component. 

Since the system under study is one where each item is measured only once, 
the error (gi + e ia ) can be combined into a single term, e:ia, thus simplifying 
the model to 

(1. 3.2) = + 

IF the above model (1.3.2) holds, IF the sample is a random sample, and 
IF we are dealing with an infinite population, then the variance of estimate 
(to be developed below) will remain valid although no measurement term appears 
explicitly in the variance definition. However, if we are dealing with a 
fini te population and the measurement error is not explici tiy considered, a 
biased estimate, approximately equal to ce:/N will be the result (where N 1s 
the number of members in the population). !!/ 

In either case, the resulting variance will be the variance for the biased 
mean. 

1.3.2. Variance of Estimate of the Mean for Measurement Data 
and Three-S tage Sampling 

The observation Y
ijk 

is assumed to be of the form 

;;; 
Yijk = Y + u i + ~ij + wijk 

4/ cf. [2], p. 305 f f. 
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where Y is the overall mean, \.&i r·.:presents a component associated wi th the fligh t­
line and is constant for all segments within the flightline. The component Vij 
represents a variation from segment to segment wi thin the flightline, and Wijk 
represents a variation from data point to data point within the segment. The 
variates ui' Vij and Wijk are assumed independently distributed with mean zero. 
The variates have variances of SF' SS' and SD' respectively (F for flightline, 
S for segment, and D for data points). The population to be studied contains 
a finite number of NF flightlines. NS segments within each flightline, and Nn 
data points within each segment. Finally, a sample of nF' nSf and nD observa­
tions are randomly chosen for flightlines, segments, and data points, 
respectively. Then the variance of the sample mean is ~/. 

(1.3.3) V(y) (NDN SN F -nDnSnF) 

NnNsNF 

An unbiased estimate of V(y) in (1.3.3) is obtained from the sample 
as follows: 

(1.3.4) 

The 

(1.3.5) 

(1.3.6) 

(1.3.7) 

1 
v(;) = ---

nFnSnD 

variances 2 
51' 

2 = l1Sl1D 

2 
52 ' 

2 
and S3 

L: .= i 2 
i ~Yi-Y) 

sl 
(nF - 1) 

t J: - ? 
2 nD i j (Yi{Y 1)0-

s2 == 
11

F
(ns-l) 

--------------------

+ 

are computed from 

nF • s~ + (ND-nD) nF 
NF ND NF 

the sample as follows: 

~/ If the values of NF" NS' and NI) can be considered infinite, or, alternativt!ly, 
if the ratios of n1/NF, nS/NS and nD/ND can be considered negligible, thl' 
finite population correction factors (f..p.c!s) can be omitted and the 
expression for the variance of the sample mean will reduce to 
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Where i = 1, · ... n
F 

j = 1, · .. , nS 

k = 1, • •• , nD 

and 

Yij = (R yijk)/nD 

Y
1 

= (1 Yij ) Ins 

:: 

<r Yi ) /nF Y = 

1.3.3. Variance of Estimate of the Mean for .Binomia~. Data and 
Three-Stage Sampling 

In many remote sensing applications the analysis is such that every 
unit in the population falls into ~ne of two classes, for example C (~corn) 
and 0 (=other). Thus: 

Number of units in C Proportion of units in C in ._-
Population Sample Population Sample 

A a P=A/N p=a/n 
_._-

By meaIlS of a simple device.1 t is possible to apply all of the mode is 
and formulas developed above to this situation. Suppose, for the moment, that 
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we are dealing with a simple random sample and single-stage sampling. Define 
Yi as 1 if the observation is in C and as 0 if it is in O. For the population 
we then obtain 

N 
(1. 3.8) Y .. 1: Yi = A 

1 
.. 

N 
1: Yi 
1 .. A .. P (1.3.9) and y = 

N N 

n 
1: Yi 1 .. a .. p 

(1.3.10) y = n n 

Consequently, the problem of estimating A and P can be regarded as that of 
estimating the total and mean of a popUlation in which every Yi is either 0 or 
1. Thus, we can start 'Out with the usual variance formulas in order to develop 
the variances for proportions. Without actually de~loping them ~/, we write 
for the population 

(1.3.11) . v (p).. N-n 
N-l 

!J! Q .. (I-P) 
n 

and for the sample (assuming a finite population) 

(1.3.12) 
q - (l-p) 

In order to transform (1.3.5), (1.3.6), and (1.3.7) into formulas which 
are useful for subs amp ling for proportions, let us proceed as follows: 

Let a
ij 

.. E Yijk, when Yijk is either 
k 

zero or one, depending on whether it falls into 0 ("other") or C{"corn"), then 

~/ See Cochran [2]» p. 32 ff. 
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(1.3.14) 

(1.3.15) 

Then 

(1.3.16) 

(1.3.17) 

(1.3.18) 

Yij '* 

Yi 

Y 

2 
sl 

2 
s2 

2 
s3 

qi' . J 

=+ 

=} 

'"' 

= 

= 

= 
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Pij • aij/nn • (t Yijk) Inn' 
k 

Compare 
= 

• (1: Pij) InS 
definitions 

Pi immediately 
j following 

1.3.7 

P '"' (1: Pi) /nF i 

- = 2 
n n 1: (Pi • p) 

S n i 
(nF - 1) 

1: E (p'ij -= 2 
nn i .J - pi) 

~F (nS - 1) 

nn -
E E Pij qij 

ntts (nD-l) i j 

Substituting the above definitions into (1.3.3) - or (1.3.4) - will yield 
the desired variance. v{p). 

1.4 PREDICTION OF TdE VARIANCE OF ESTIMATE FOR VARIOUS 
SUBSAMPLING RATIOS 

We not only desire to evaluate the precision of estimates for a given 
sampling scheme, but we are perhaps even more interested in sampling and sub­
sampling ratios which are different from those that have been used hitherto. 
This information is important for planning future experiments and applications 
of remote sensing on the same type of population. 
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iii 
From the model in (1.3.2) we can predict the variance of y for different 

sampling and subsampling ratios. 1/ 

Suppose in the initial experiment we had values of nF, nS ' and n
D

, . 
respectively, then the variance was I 

(1. 4.1) 
~ 

V(y) 

S 2 S2 S2 
F s D 

= --- + ---- + 
nF n~S nFnSnD 

" , 
If these values are changed to uF ' nS ' and nD' respectively, the variance of 
the sample mean becomes 

(1.4.2) 
, 

V (y) 

52 
F + = -,-

n
F 

222 
In order to utilize this approach, sample estimates of SF' SS' and SD 

are required. These-may be obtained from the analysiS of variance of the 
sample data as shown in Table 1.4.1 for measurement data. Each of the 
variance componenets s;, s~, and s~ can be estimated from its mean square and 
the one just below. ~I For example 

2 2 
S2 - SD 

= 

2/ In the interest of expediency we shall omit all f.p.c.'. from (1.3.3) 
whenever it is being used in the following discussion. It should be 
noted that omission of the f.p.c.'s merely results in more conservative 
variance estimates. 

~/ In practice, variance components may turn out to be negative either 
because the model employed is not relevant or because of the nature of 
the sampling distributions of variance components (cf [3] and [5J, 
p. 194 ff). 
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Table 1.4.1 Analysis of Variance for Three-Stage Sampling. 

Degrees of 
Source of Variation Freedom Mean Square Estimate of -

E - E 2 
Between flight lines (nF-l) s2=nSnO i(Yi-Y) 222 

1 So +nOSS +nSnOSF 
(nF-l) 

2 EE- :: 2 
Be tween se gmen ts nF(nS-l) 110 i j(YifYi) 2 2 

s = So +nOSS 
within flight lines 2 

nF(nS-l) 

2 E E E 
(Yijk-Yij) S2 Between data points nFnS(nD-l) s = i j k 

wi thin se gmen ts 3 D 
n~S (nO-l) 

While the above discussion utilizes expressions (1.4.1 and 1.4.2) which 
relate to measurement data, a translation to binomial data can readily be 
made on the basis of discussion in Section 1.3. The relationships. in (1.4.1 
and 1. 4.2) hold, only the computational procedures changes·. 

1.5. OPTIMAL SAMPLING AND SUBSAMPLING FRACTIONS 

These depend on the relationship expressed in (1.3.3) or (1.3.4), 
respectively, as well as on the cost function relevant to the sys tern. The 
following cost function is proposed: ~f 

(1.5.1) 

if This is a highly simplified cost function and should be considered as 
being illustrative only. 
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Where 

c .- total cost ($) of collecting and analyzing data 

cF = cost of flying a flightline of a given length and width 

Cs "" cost of collecting data over a segment of a given length and 
width 

cn - cost of analyzing a data point of a given length and width 

SD = cost of s tori.ng the (analyzed) data point 

r D = cost of retrieving the results from a data point. 

For a given authorized total cost (a available bydget) we desire to 
select values for nF, ns ' and nn such that V(~) (or V(p) is minimum. This 1s 
a problem of constrainea minimization, and we shall write 

( 1.5.2) 

where LagranBian Dlultiplier 

or, 

(1.5.'3) 
(C- .•.• ) - 0 

Differentiating (1.5.3) with respect to nF, as' and nn' respectively, and 
setting the resulting equations equal to zero will result in a set of three 
equations which, when solved, will yield the o~timum values in nFo t' nSoPt ' 
and nnopt' Sample estimates for s~, S~, and Sn will have to be uged. Their 
computation is discussed in Section 1. 3. 

By solvi.ng the set of equations resulting from a differentiation of (1.5.3) 
repeatedly for different values of C, a performance function may be traced out, 
showing the rf-lationship between the magnitude of the variance and an ever 
costlier data collection scheme. It is hypothesized that this relationship 
will have the general form of a hyperbola (See Figure 1.4.1). The area above 
the performance function (in Figure 1. 4.1) may be termed the "irrational region", 
since an improvement can always be achieved for a situation such as represented 
by point A in Figure 1.4.1, for a given cost, C, be rearranging the subsampling 
ratio so that a movement out of the "irrational region" onto the performance 

~ 
function occurs. The result wil.J. either be a smaller sampling error, V(y), 
for a given cost. C, (a downward movement onto .the~performance function) or a 
lower cost. C, for a given size sampling error, V(y), (a leftward movement 
onto the performance function. 



- 11 -

I 

Irrational 

--- Region 
III~ 
'-' 
::> 
~ A 
0 --" ~ 
~ 

, 
~ 

CIO 
I 

c: 
..-f 
r-l 

if 
tU 

CIl 

Cost of Data Collection (C) 

Figure 1. 4.1 



- 12 -

PART 2. EMPIRICAL ESTIMATES 

2.1. OBJECTIVES 

In Part II of this paper, an empirical evaluation of the precision of 
remote sensing estimates of the "acreage of corn in a given region" will be 
developed. The effect of various subs amp ling ratios on the precision of 
estimates wlll alsv bt! investigat.ed empirically. 

2.2. THE DATA 

2.2.1. Site of the Experiment 

The site of the experiment from which the data are taken is that of the 
"Intensive Study Area" of the 1971 Corn Blight Watch Experiment (CBWE). This 
area is compri8ed of the western-most portion of the state of Indiana, a region 
whiCh is approximately forty (40) miles wide (in an east-west direction) and 
extending over the entire (north-south) length of the state (see Figure 2.2.1). 

2.2.2. Source of Data 

The data used for deriving empirical variances-of estimate of corn acreage 
are the multi-spectral scano.!?!" da.til 10/ collected on 'Mission 43 M of CBWE. 
(See Appendix Table and also rabl~ 4-;-Appendix E, Multi-spectral Data Reliabili ty 
AnalYbis, [4]. These data we·re collected over thirty (30) randomly selected 
segments. Each of these segments was approximately 1 mile wide and 10 miles 
long. Data for all segments were collected with identical instruments and 
identical techniques. However, data collected over fifteen of the segments were 
analyzed by the University of Michigan and its data analysis techniques. The 
other fifteen segments were analyzed by LARS and its data analysis techniques. 
The location of the "Michigan Segments" and "Purdue Segments" is shown in 
Figure 2.2. L 

10/ Photographic data are also available for this site and could have been 
used. 
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2.3. EVALUATION OF DATA 

2.3.1. Editing of Data 

The data were first examined for consistency. As a resul t, segments 210, 
226, and 228 were eliminated from further analysis. 

(a) Segment 210 was eliminated because its area of 7.2 square miles 
was considerably smaller than the planned 10 square miles for 
each segmen t. 

(b) Segment 226 was eliminated because its area of 14 square miles was 
considerably larger than the planned 10 square miles for each segment. 

(c) Segment 228 was eliminated because its "planimetered acres" were 
considerably lower than those for other segments which had a 
smaller stated "segment area" (in sq. miles). an obvious inconsistency. 
(Further examination of this particular segment revealed that the 
segment was an island in the Wabash River.) 

2.3.2. Testing for Differences between Michigan Segments and Purdue Segments 

The original intent was to utilize data from the 27 segments (30 minus 
those three eliminated because of inconsistencies). However, because of the 
differences in analysis techniques there was reason to hypothesize that the data 
from the Michigan and the Purdue segments have to be 'viewed as coming from 
different populations. Therefore, it was necessary to perform appropriate tests 
before pooling the Michigan segments with the Purdue segments. This was 
accomplished by testing independently for differences in proportions and dt ffl!r­
ences in variances be tween the Michigan and the Purdue segments 11/ 

(a) Difference between Variances of Estimate: The hypothesis tested was 

= .05 

F(1-.5a) (12,13) = l/F(.Sa) (13,12) 1/3.569 = .280 

F( .5a) (12,13) 3.525 

11/ This represents a relatively weak test. However, as will be seen below, 
the test did distinguish between the two sets of data. Thus, a more 
complex and powerful test would have added li Ule for the purpose at hl1nd. 



- 15 -

where 02 = 
M 

variance or estimate for Michigan segments 

02 = 
P 

variance of estimate for Purdue segments 

sample estimate of 
2 .000283 v = oM = 

M 

sample estimate of 
2 

.000721 v = 0p = 
P 

Therefore, 

2 2 
F = 0p/oM = .000721/.000283 = 2.547 

Since 

it is not possible to reject Ho: 0M= 0p' 

(b) Difference be tween Proportions: The hypothesis tested was 

Where 
~ 
IIp 

PM 

Pp 

The reo fore t 

11: = 

where 

(l = .05 

1?i(.5a) = .± 1.96 

= proportion of area in corn 

= proportion of area in corn 

= sample estimage of ~ = 

= sample estimate of IIp = 

- -
PM - Pp 

0--
(PM-Pp ) 

= 
.1514 - .2900 

.0009 

in Michigan segments 

in Purdue segments 

.1514 

.2900 

= -

+ 

.1386 
.0009 

= - 462.0 

= .0003 
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1:1: 1:1: 
and rI = mi Yim + Ej YjE .. 1 1502 1 444 = .2067 

n
M + np 7,268,439 

where nM 
= number of data points in Michigan segments 

np = number of data points in Purdue segments 

Yim 
.. value of ith observation in mth Michigan segmen t 

Y. = value of 
JP 

jth observation in pth Purdue segment 

Since 

the hypothesis H 
o TIM = TIp must be rejected. 

2.3.3. Further Examination of the Difference between Michigan and Purdue 
Segments 

Rejection of the Ho: TIM - TIp necessitates the conclusion that the mul ti­
spectral data from the Michigan and the Purdue segments may not be pooled for 
purpose of this analysis. However, before proceeding with separate analysis 
for either the Michigan or Purdue segments, it is important to examine whether 
rIM differs from TIp because &f 4ifferances in analysis techniques or because 
or true differences in the proportion of land in corn in the areas where the 
two sets of segments were located. If the latter is the cause for the difference, 
then neither set of segments alone is useful for producing estimates for the 
entire Intensive Study Area. 

To examine this question, "ground observations" for each set of segments 
were compared to each other as well as to the lIulti-spectral data of the 
respective set of segments. While no formal statistical tests were made, data 
in Table 2.3.1 indicate that estimates from "ground observations" agree well 
with estimates from multi-spectral data for the Purdue segments. However, a 
substantial downward bias appears to be present in the multi-spectral data for 
the Michigan segments. Therefor~t only Purdue segments will continue to be 
used in the following analysis. 
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Table 2.3.1. Comparison of Estimates from Ground Observations with Estimates 
from Multi-spectral Scanner (MSS) Data for the Michigan and 
Purdue Segmen ts 

j Michigan Segments Purdue Se2ments 
Source of Confidence Confidence 
Estimate P v(p) Interval* cv(%) P vel»~ Interval* cvi%l 

Ground 
Observations .2377 .001108 14 .2745 .001739 15 

MSS Data .1514 .000283 .1159 - .1875 11 .2900 .000721 .2328-.3472 9 

*p + t.OS V v(p) \ 

2.4. THE VARIANCE OF THE ESTIMATE 

2.4.1. Delineation of Flightlines 

The segments in the Intensive Study Area were not selected on a flightline 
basis. Instead, they were selected on a random basis. In order to permit an 
analysis of the effect of different subsampling ratios on the precision of the 
estimate from a three-stage sampling scheme (f11ghtlines, segments within flight­
lines, and data points within segments), hypothetical flightlines had to be 
COIlS tructed fran. the available data. Such construct-ion of hypothe tical f11gh t'­
lines assuWE:S that "movement" of segments onto flightlines will not destroy 
the va11dity of the data. -

Figure 2.4.1 shows that three (hypothetical) flightlines were used. This 
figure also shows the necessary "movement" of each of the four segments per 
flightline into the respective flightlines. 

2.4.2. Computation of the Variance 

The computation of the variance of estimate and the variance components 
for each of the stages follows the procedure which is described elsewhere 
(see [l~. 12/ The results are. summarized in Table 2.4.1. 

12/ Minor modifications were made to account for variability in the number 
of data points per segment. 
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Table 2.4.1. Analysis of Variance for a Three-Stage Sampling Scheme in Remote 
Sensing (Three Flightlioes - of = 3; fout' segments per flightlinc 
-uS = 4; 199,675 data points per segment -oD = 199,675). 

Degrees of Mean Squares 
Source of Variation Freedom (ns's) Estimates of -

Between flightlines 2 1,558.5 
222 

SD+nDsS+nSnnSF 

Between segments within 
2 2 

flightlines 9 3,726.6 SD + nDS S 

Between data points 
S2 wi thin segmen ts 2,396,101 .2005 

D 

In this experiment the f .. p.c. cannot be ignored. Therefore, 
of estimate follows directly from (1.3.4) and (1.3.13)-(1.3.18). 
NF = 44, NS = 26, and ND = 31,948 x 10 3 , then the sample value of 
of estimate is 13/ 

the variance 
Given 
the variance 

v(p) = .0006957. 

2 2 S2D 
The vi:H:':Lance components SF,"SS' and can now'be estimated from each mean 

squar€ and tho:' one Just below. However, S~ turned out to be negative. 14/ 
If it can be assumed that observations wi tfiin flightlines are random samples 
from a normal population, then a tes t on the intraclass correlation coefficient. 
Ho :Pr=O becomes equivalent to Ho: Sf = O. Such a test was executed as follows 
(cf. [5), p. 194ff.): 

13/ 

a = .05 

F = I ? r 

.95(2,9) 
,+,<1..00 

F =~ + !-,,558.5 .. .4182 
MS

S 
j. 726.6 

Had the f. p. c. been ignored., v' (~) .. .0006504. 
(Table 2.3.1) where v(p) was computed under the 
random sample and where the Lp.c. was ignored. 

Compare this to v(p)- .00072 
assumption of a simple 

14/ This "is not only possible but likely in a design such as this." 
See [3]. 
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Since F < F' 95 (2 9)' Ho cannot be rejected. Therefore, the variance 
components utilized in ~he subsequent analysis are as follows: 

S2 = F 

S2 = 
S 

S2 = n 

0 

.0187 

.2005 

2.S. EFFECT OF SUBSAMPLING RATIOS ON 
PRECISION OF ESTIMATES 

The formula (2.5.1) was evaluated for various values of nF' nS' and nO' 
The r~sults are shown in Figures 2.5.1-2.5.3. 15/ 

(2.5.1) 
1 v(p)=(­

nF 

Perhaps the most striking observation is that collection and analysis of 
a large number of data points within segments does not improve the precision 
of estimate in this particular application. While on the average nearly 200,000 
data points were actually analyzed in the experiment, our calculation shows 
that this did not improve the precision of estimate ·aver that which is derived 
from n'n = 50,000, given certain values of n'F and n'S' Indications are that 
a considerably smaller number of observations within segments would be satis­
factory (see Figure 2.5.1). 

2 . . 
Because SF turned out to be zero in this analYBis, the graphs in Figures 

2.5.2 and 2.5.3 are merely mirror images. However, both graphs show that the 
gain in precision of estimates levels off relatively quickly. and the collection 
of even more data - unless without cost - is likely to become uneconomical 
rapidly. 

For an explanation of the mderlying ratioIlal and a definition of 
variables see Part 1 of thig paper, in particular equations 1.4.1 and 
1.4.2. 
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Figure 2.5.2 
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2.6. CONCLUSIONS AND IMPLICATIONS 

Results from this study are not nearly as important because of what they 
show regarding the precision of estimate for Mission 43M as they are because 
of what they suggest as required analyses in order to assure-future practical 
and economical applications of remote sensing. Some of these requirements 
are as follows: 

(1) The statistical theory and model employed here are of the rather 
standard variety (only insignificantly modified for the application at hand) 
and make certain assumptions about the measurement error involved. These 
assumptions are to date untested and mayor may not hold. Even if they hold, 
the results obtained here are at best an unbiased variance about the biased 
mean. Furthermore, the distribution of variance components in multistage 
sampling applications to remote sensing needs further study. The fact that in 
this study the hypothesis SF .. '0 could not be rejected does not rule out the 
possibility that the computed value for SF was negative because of an irrelevant 
statistical model. 

(2) This study, in not permitting rejection of the hypothesis that 
SF = 0, points out that we need to develop organized approaches to the use of 
~ priori information. In retrospect, it appears obvious that, given the 
cropping pattern in the westernmost 44 mile wide strip of Indiana, the collection 
of sample data over 12 segments in one flightline should yield an estimate as 
precise as that obtained by collecting data over 4 ~egments in each of 3 
flightlines. But how can this be determined prior to the experiment? It is 
actively possible that the appropriate use of .! priori information (e. g. census 
data) could provide the needed insights and basis for designing more efficient 
experiments. Perhaps an approach similar to the one used in "Project Chitter [6] 
would be fruitful. 

(3) Subsampling ratios and their effect on preciSion of estimates need 
to be examined. This study points out strikingly that there is the temptation 
to overs amp Ie in some stages without resulting gains in preciSion (albeit 
with increasing costs of data storage and analysis). 

(4) To date we know nothing about the relationship between costs, 
subsampling ratios, and preCision of estimates. Yet, it would seem less costly 
to collect data over twelve segments in one flightline than to collect data 
over four segments in each of three flightlines. But how much less costly, 
and what is the trade-off in precision? 

(5) Similarly,.we know little about the techniC41 .ad physical diffi­
culty of collecting data in various ways. How much easier is it to collect 
ground truth on one flightline versus several flightlines1 How much easier 
is it to collect "good" data over one flightline versus several? Given thl.~ 
presence of a broken cloud cover, what is the effect on the quality of data 
from a few large segments versus a large number of small segments? 
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(6) It is not possible to generalize from the results of this study to 
other applications. Instead, similar analyses are required for other types 
of applications (eg., estimation of acres in corn at different times during 
the season, estimation of acres in other crops, estimation of degree of insect 
and disease infestation). 

(7) It is unlikely to be practical to develop a unique sampling scheme 
for each application. Instead, various applications may have to be viewed in 
terms of joint costs and joint products. Existing theories of joint costs and 
joint products and associated optimization procedures should be explored 
for their relevance. 

(8) If resources are limited (as they always are), allocation of resources 
over time for taking samples (i.e. what time periods reflect important change) 
must also become an integral part of the analysis. For instance, changes over 
time in corn blight levels would, in all likelihood, affect the variance and 
the optimal sampling scheme. On the other hand, "acres in corn" may not be 
affected by passage of time between planting and harvesting. 

(9) When remote sensing is done by aircraft, a sampling scheme such as 
the three-stage sampling scheme used in this analysis appears useful. How­
ever, there is no ~ priori reason why the same model should hold for remote 
sensing by satellite, when the satellite sequentially covers the entire region 
to be studied. Perhaps a simple random sample is more appropriate under such 
circumstances. Also, when time of overflight can no longer be controlled, the 
question of the extent to which a broken cloud cove~ can be used as the 
sample selection device becomes an interesting and important one. 



- 26 -

References 

[1] Anderson, R. L., and T. A. Bancroft, Statistical Theory in Research, 
McGraw-Hill, New York, 1952. 

[2] Cochran, W. G., Sampling Techniques, Wiley, New York, 1953. 

[3] Leone, F. C., and L. S. Nelson, Sampling Distributions of Variance 
Components, Technometrics, 8, 3, August 1966, pp. 457-468. 

[4] LARS, CBWE Interim Report, Lafayette, Indiana, 1971. 

[5] Ost1e, B., Statistics in Research, Second Printing, Iowa State 
University Press, Ames, 1956. 

[6J Project Chitter (Acre): 1967 Final Report, Mark Systems, Inc., 2999 San 
Ysidro Way, Santa Clara, California 95051. 



- 27 -

APPENDIX 

Appendix Tab'le l. Mission 43M (August 9, 1971,) Multispectral Scanner Data from 
the Intensive Study Area. 

Michigan (M) Pet. of Acres of P1anim. 
or Points Segment Corn Acres Segment 

Purdue (P) in Classified (Ground of Area 
Segment No. Segment Segment as Corn Truth) Segment (Sq. miles) 

(1) (2) (3) (4) (5) (6) (7) 

201 M 387890 12.57 1537 7970 12.0 
202 M 301087 15.56 2191 6569 10.0 
203 M 298075 8.31 2831 6858 11.5 
204 M 379556 20.86 2892 7720 11.0 
205 M 332032 19.00 1888 7780 12.0 
206 P 158885 35.87 2665 5285 9.0 
207 P 233153 36.98 3404 7973 12.0 
208 P 225342 44.59 3679 7558 12.0 
209 P 165708 43.84 2324 6059 9.0 
210 P 130511 21.67 1092 4790 7.2 
211 M 289830 11.80 2272 6935 10.5 
212 M 306366 13.64 2330 7650 9.5 
213 M 245800 19.65 1716 6094 10.0 
214 M 262840 16.33 1247 5232 9.0 
215 P 154467 24.80 864 5750 9.0 
216 P 207218 18.31 1278 6932 10.0 
217 P 246752 26.37 1758 8030 11.5 
218 P 208094 26.02 318 7022 10.5 
219 P 181745 14.81 996 5946 9.0 
220 M 244795 8.96 97 5774 8.5 
221 P 224446 35.64 2362 5835 9.0 
222 M 282812 8.42 338 6000 9.0 
223 P 194361 20.64 994 6749 8.5 
224 M 221671 2.72 201 5120 9.5 
225 P 195930 27.42 2125 7275 10.5 
226 M 409600 12.80 887 9121 14.0 
227 M 264795 23.42 1490 6774 9.5 
228 P 91457 60.44 997 3857 8.0 
229 M 261700 29.86 1684 5855 8.5 
230 P 161521 21.23 871 5535 8.5 
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