12-1986

Acoustic Energy Propagation in Noise Control Foams: Approximate Formulae for Surface Normal Impedance

J. Stuart Bolton
Purdue University, bolton@purdue.edu

E. R. Green

Follow this and additional works at: http://docs.lib.purdue.edu/herrick

http://docs.lib.purdue.edu/herrick/8

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
ACOUSTIC ENERGY PROPAGATION
IN NOISE CONTROL FOAMS:
APPROXIMATE FORMULAE FOR
SURFACE NORMAL IMPEDANCE

J. S. Bolton
E. R. Green

Ray W. Herrick Laboratories
School of Mechanical Engineering
Purdue University
West Lafayette, IN 47907

HERRICK LABS / PURDUE UNIVERSITY
INTRODUCTION

Noise Control Foam:
- has two phases
 - solid ("frame")
 - air
- supports two wave types
 - frame wave
 - airborne wave

Investigate:
- division of acoustic energy between phases
- division of acoustic energy between wavetypes

Why:
- to identify possible simplifications in acoustical modelling.

HERRICK LABS / PURDUE UNIVERSITY
TYPE OF FOAM

Industrial grade polyurethane foam most often used in noise control applications is:

— RELATIVELY STIFF

— PARTIALLY RETICULATED

- Relatively stiff: Static bulk modulus of elasticity
 \[\geq \rho_0 c^2 \]

- Partially Reticulated: Foam cells are partially closed by residual membranes
MODEL OF ELASTIC POROUS MATERIAL

Generalized Rayleigh Model

- Angled pores in elastic matrix

\[V_1 \rightarrow \text{frame velocity} \]
\[V_2 \rightarrow \text{fluid velocity} \]
\[P_1 \rightarrow \text{force/unit area applied to solid component} \]
\[P_2 \rightarrow \text{force/unit area applied to fluid component} \]

Coupling:

- Inertial
- Viscous
- Pressure
STRESSES IN FOAM - SEALED

1. FRAME (P₁):

![Graph of Frame Wave]

- - - - - - , Total
- - - - - - , F - Wave
- - - - - - , A - Wave

2. Air (P₂):

![Graph of Air Wave]

- - - - - - , Total
- - - - - - , F - Wave
- - - - - - , A - Wave

CONCLUSION: Frame wave dominates

HERRICK LABS / PURDUE UNIVERSITY
VELOCITIES IN FOAM - SEALED

1. FRAME \((V_1) \):

| \(|V_1| \times 10^{-3} \) |
|--------------------------|
| 8.0 |
| 6.0 |
| 4.0 |
| 2.0 |
| 0.0 |

- , Total
- , F - Wave
- , A - Wave

Depth [m]

2. Air \((V_2) \):

| \(|V_2| \times 10^{-3} \) |
|--------------------------|
| 8.0 |
| 6.0 |
| 4.0 |
| 2.0 |
| 0.0 |

- , Total
- , F - Wave
- , A - Wave

Depth [m]

CONCLUSION: Frame wave dominates

HERRICK LABS / PURDUE UNIVERSITY
IMPEDANCE CALCULATIONS - SEALED

\[Z = Z_1 + Z_2 \quad \text{(both wave types),} \]
\[= Z_1 + Z_2 \quad \text{(frame wave only),} \]
\[= Z_1, \quad \text{(\(\zeta_n = Z/\rho_o c\))} \]

Graphical Representation:

- **Real Part (Re(\(\zeta_n\))):**
 - Constant values across frequency.
 - Frequency range from 0.00 to 10.0 kHz.
 - Values range from 0.00 to 20.0.

- **Imaginary Part (Im(\(\zeta_n\))):**
 - Constant values across frequency.
 - Frequency range from 0.00 to 10.0 kHz.
 - Values range from 0.00 to 2.50.

Legend:

- **HERRICK LABS / PURDUE UNIVERSITY**
STRESSES IN FOAM - OPEN

1. FRAME (P_1):

CONCLUSION:

At Surface: - No simplification of P_1 possible.
 - P_2 mostly airborne wave (eventually frame wave).

HERRICK LABS / PURDUE UNIVERSITY
CONCLUSION:
At Surface: - No simplification of V_1.
 - V_2 approximately airborne wave (eventually frame wave).

HERRICK LABS / PURDUE UNIVERSITY
IMPEDEANCE CALCULATIONS - OPEN

\[Z = \left[\frac{(1-h)^2}{Z_1} + \frac{h^2}{Z_2} \right]^{-1} \quad \text{(both wave types)}, \]

\[= \frac{Z_2}{h^2} \quad \text{(both wave types)}, \]

\[= \frac{Z_2}{h^2} \quad \text{(airborne wave only)}, \]

\[\begin{array}{c}
\text{Re}\{\xi_n\} \\
\text{Im}\{\xi_n\}
\end{array} \]

\[\text{Frequency [kHz]} \]

HERRICK LABS / PURDUE UNIVERSITY
CONCLUSIONS

FOR NOISE CONTROL FOAMS:

1. Surface Normal Impedance of Infinite Layers:
 - Sealed: - Airborne wave negligible
 - Air component contribution small
 - Open: - Both wave types must be considered
 - Frame component contribution is small due to porosity effect.

2. Surface Normal Impedance of Finite Depth Layers:
 - Sealed: - Airborne wave negligible
 - Air component contribution small
 (continuously bonded to backing).
 - Open: - No simplification possible in general.