ABSTRACT
Signalized diamond interchanges are pairs of ramp intersections characterized by interlocked left turns and relatively close spacing. This paper describes a series of performance measures derived from high-resolution signal controller event data that can be used to optimize the internal phase sequence and offset to improve traffic flows within diamond interchanges and to qualitatively and quantitatively assess the progression of the interior movements. The new heuristic developed in this paper improves on traditional green band optimization techniques by incorporating actual demand profiles measured in the field. A field analysis was performed on a diamond interchange at US 469 and 96th Street in northwest Indianapolis, IN, where the existing sequence data was collected and used to model the alternative sequences to identify the optimal sequence. Interior operations were improved under the optimized settings; the percent of vehicle arrivals on green increased by 19% during the 0900-1500 midday. Video observations were used to corroborate the data and are included in a video synthesis of the time-space trajectories.

AERIAL MAP

JURISDICTION DIAGRAM

TIME SPACE SEQUENCE SWAP SIMULATIONS

PURDUE COORDINATION DIAGRAM WITH DELAY
Sequence Optimization at Signalized Diamond Interchanges

Using High-Resolution Event-Based Data

Alexander M. Haines, Howell L. Amanda L. Stewart, Christopher M. Day, James R. Stacy-Johnston, Darcy M. Bullock

Paper No. 15-0644

Sequence Optimization at Signalized Diamond Interchanges

Using High-Resolution Event-Based Data

DELAY / AOG BY MOVEMENT

DELAY / AOG BY SEQUENCE

SOLUTION SPACE

PCD BEFORE / AFTER

DELAY / AOG BY MOVEMENT

WB FLOW PROFILE DIAGRAMS

EB FLOW PROFILE DIAGRAMS

PRO Dicted VS. ACTUAL ARRIVALS

CONCLUSIONS

Diamond interchanges are a common geometric grade separation between access controlled freeways and crossing arterial roads. Passer III has historically been the most robust tool for designing diamond phase sequence. This paper builds upon that concept by leveraging high-resolution event-based data for modeling alternative left-turn sequencing at signalized diamonds. The linear superposition techniques used to model arrival characteristics were validated by comparing predicted arrivals with actual arrivals (Figure 11). This modeling technique was demonstrated to be effective at identifying a new sequence and offset that resulted in quantifiable improvement in field operation. For the study diamond interchange at I-69 and 96th Street, the methodology in this paper increased the interior AOG by 19% for the 0900-1500 morning peak.