Research Data Curation, Discovery, and Dissemination

D. Scott Brandt
Purdue University Libraries, techman@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/lib_fspres

Part of the Library and Information Science Commons

Recommended Citation
http://docs.lib.purdue.edu/lib_fspres/6

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
E-Science Outreach & Learning: University of Oklahoma School of Library and Information Studies

Research data curation, discovery, and dissemination
Agenda

• Background: struggling with e-Science
• Data Curation Profiles: who’s willing to share what with whom, and when?
• But where are you gonna put this data???
 (Purdue University Research Repository)
• Collaborations needed to make this all work
• Data services approach (“data deeds & they’re done dirt cheap”)
Setting the stage

2004: Purdue Interdisciplinary Research Initiative revealed many data needs on campus

What faculty said...

• Not sure how or whether to share data
• Lack of time to organize data sets
• Need help describing data for discovery
• Want to find new ways to manage data
• Need help archiving data sets/collections
Define curation

• **Curation** is the activity of managing and promoting *the use of data, starting from the point of creation*, to ensure its fitness for contemporary purposes and availability for discovery and re-use.

 – **Archiving** is a curation activity which ensures that data is properly selected and stored, can be easily *accessed* and that its logical and physical integrity is maintained over time.

 • **Preservation** is an archiving activity in which specific items of data are *maintained* over time so that they can still be accessed and understood through succession and obsolescence of technologies.

“...active management and enhancement of digital information assets for current and future use.”

- active as opposed to passive...
- enhancement includes metadata to find & use
- discoverable by and available to wider audiences over longer periods of time
Librarians provide education on depositing and finding data.

Librarians help shepherd and curate datasets.

Librarians contribute to or collaborate on projects.

Librarians consult on data management plans.

Small science, single PI, small lab

P. Bryan Heidorn, while Program Director at NSF, demonstrated that small science = 80% * (awards under $350,000)

By small science, we mean usually a single PI (or one who may collaborate with another PI) in a fairly small lab setting, where there is likely on average 2-6 graduate students/post docs and possibly support from the department for a part-time lab manager or secretary.

photo from Science & Technology Review https://www.llnl.gov/str/December01/Orme.html
Small science can encounter unintentional consequences

Small science researchers self report: no specific person for data management/curation; data is likely saved to hard drives in the lab and backed up on CDs, usually by the students. While students have received “research integrity” training (which focuses on making data available upon request by funder, publisher, or FOIA, etc.) it is not likely that anyone could retrieve usable data easily or quickly.*

*D. Scott Brandt. Provost Fellowship, Final Report 2009 (unpublished) all pictures Purdue University
Because single PIs tend not to have mature data curation in place, they are not likely to see where to enter data curation continuum.
2006: Founded D2C2 to further investigations, organize research and leverage collaborations

Distributed Data Curation Center:
• Created “research arm” for Purdue Libraries
• Established recognizable mode for collaboration with research faculty on campus
• Focused research on data curation problems, distributed environments, single PI/small lab
Consumer
Project Title: "Investigating Data Curation Profiles Across Multiple Research Disciplines." Investigators in the Distributed Data Curation Center in the Libraries at Purdue University, and the University of Illinois, Urbana-Champaign will address the question “which researchers are willing to share data, when, with whom, and under what conditions?” The team will produce case studies of researcher data/metadata workflow, curation profiles describing policies for archiving and making available research data, a matrix to compare parameters across disciplines, system requirements for managing data in a repository, and recommendations for implementing results under diverse systems. The project will describe the roles of librarians and identify the skill sets they need to facilitate scholarly communication and data sharing.
With whom would you share your data after the data have been analyzed?

- Nobody: 11%
- Collaborators: 26%
- My research center or institution: 16%
- My professional society: 5%
- Anyone: 42%

n=19
Prioritize your needs for the following types of services

1. The ability for researchers within my discipline to easily find this dataset
 - Not a priority
 - Low priority
 - Medium priority
 - High priority
 - I don’t know or N/A

2. The ability for researchers outside of my discipline to easily find this dataset

3. The ability to cite this dataset in my publications

4. The ability for people to easily discover this dataset using Google
Who is willing to share what with whom?
What data sets do they have?
How are they managing these data sets?
What would they like to do with them?
Welcome to the Data Curation Profiles community!

This website is an environment where academic librarians of all kinds, special librarians at research facilities, archivists involved in the preservation of digital data, and those who support digital repositories can find help, support and camaraderie in exploring avenues to learn more about working with research data and the use of the Data Curation Profiles Tool.

A Data Curation Profile is essentially an outline of the lifecycle within a research project. The Profile and environment of scholarly communication, especially upstream rather than previously imagined. If research data sets or collections, what does that mean for...

Download the Data Curation Profiles Toolkit

The Data Curation Profile Toolkit is available for anyone to download and use. However, we require that you register by creating an account on this site first. The Data Curation Profiles Toolkit is composed of four documents:

1. The User Guide - (login to download)
 The User Guide provides information about the Data Curation Profiles, including background information, the purpose and use of Data Curation Profiles, and directions on how to construct a Data Curation Profile.

2. The Interviewer’s Manual - (login to download)
 The Interviewer’s Manual provides the framework for the interview. It contains text and questions to be read to the participating researcher over the course of the interview. Some of the questions to be asked will be in response to the questions given by the researcher in the Interview Worksheet (see below).

3. The Interview Worksheet - (login to download)
 The Interview Worksheet is to be given to the researcher by the interviewer at the start of the interview. It is the worksheet that the participating researcher will fill out over the course of the interview. In addition to capturing important information, the responses provided by the researcher will serve as the basis for further discussion during the interview.

4. The Template - (login to download)
 The Data Curation Profile Template describes the structure of the Data Curation Profile. Each section or subsection within the Data Curation Profile template contains a brief definition of the information that is needed to populate an individual Data Curation Profile for the participating researcher.
3.2 Data kinds
3.3 Target data

4. Intellectual Property

4.4 Attribution

5. Organization and Description

6. Ingest/Transfer

7. Sharing & Access

8. Discovery

10. Interoperability

12. Data Mgmt

13. Preservation

Data Repository

Understanding

Negotiation
The Data Table: Identifying data stages helps to clarify what might/can/should be disseminated, archived, preserved.
2. How long would your data set be useful or have value for you or others if it were to be preserved?

___ My dataset does not need to be preserved.
___ Less than 3 years.
___ 3 years or more but less than 5 years.
___ 5 years or more but less than 10 years.
___ 10 years or more but less than 20 years.
___ 20 years or more but less than 50 years.
___ 50 years or more but less than 100 years.
___ Indefinitely.

Have the interviewee answer question 2 on the worksheet relating to the length of time the data should be preserved. Then ask the interviewee to talk a little about his/her response:

• Why did you select this length of time?

Section 13 - Preservation

This section contains information about the needs / desires of the data client regarding the preservation of the data set under discussion.

If needed, a general statement about the researcher’s preservation needs can be inserted here.

13.1 - Duration of preservation
A statement about the length of time the data is to be preserved. The duration may be event based rather than time based, though estimation for the length of time related to the event should be noted where possible.
U1N1S2 – (reviews the length of preservation question) – I think it is probably this.

I – Okay, 10 to 20 years.

U1N1S2 – Well I have data from my PhD that still would be useful if I could still access it. So that’s from 1994, so yes, 10 to 20 years.

I- Okay. Is there a particular reason for the time frame as opposed to say 50 or 100 years?

U1N1S2 – I guess I’m hoping that we are able to do the modeling by then.

I – I see, so once the model has been worked out and you are very confident that the model does what you want it to do, then the underlying data used to get to that point would not be as valuable anymore?

U1N1S2 – I think so, yeah. And other things in that time period. Actually used. So...

13.1 - Duration of preservation
The scientist believes that her data should be preserved for 10 years or more but less than 20 years. The scientist believes that the mathematical model they are working on will be perfected within this timeframe. When the model is considered complete the data will lose much if not all of its value. In addition, the device used in generating the data may become obsolete within this time period and replaced, again diminishing the value of the data.
Module 10: Data Sharing

This module presents information on data sharing and includes some helpful exercises for determining a researcher's conditions for sharing their data. Before beginning this module, it is recommended that you have an understanding of the data lifecycle as presented in module 9.

Source: http://www.urisa.org/publications/journal/articles/when_data_sharing
DO NOT HANG ITEMS FROM SPRINKLER HEAD
THIS WILL CAUSE FLOODING

Profiles
Data curation is an active process...

How this is manifested in PURR

http://research.hub.purdue.edu
Researchers use PURR for help with data mgmt plans via Pre-Awards, workshops and promotion, and by word-of-mouth

Librarians consult on data management plans.
Researchers can create projects at any time, invite others to join... the goal is to help facilitate research development

Librarians can contribute to or collaborate on projects.
Once a grant is awarded, researchers get an increase in space allocation and length of time for project and data.

Librarians consult on data management.
To make data sets publicly discoverable and available, there is a submission and "publishing" process.

Librarians help shepherd and curate datasets.
To make data sets publicly discoverable and available, there is a submission and “publishing” process.
PURRR functionality & service

Data mgmt planning resources → Creating projects, collaborating → IF grant awarded, more space → Data submitted for publishing/archiving → Discovery commitment ends, Long term preservation decision

PURRR policy allows for a specified time for discovery, and then decisions are made regarding long-term preservation

Librarians provide education on depositing and finding data.
Distributed Liaisons + Centralized Libraries Services + Campus Services = Support across the research lifecycle
What about my current proposal?

- **Option 1: use the Purdue Data Management Plan**
 - Libraries/OVPR will provide a citable overview of basic, long-term issues.
 - You append details relevant to your project guided by questions provided by Libraries.
 - Libraries are available to provide review.
 - Example: data management resources of the Consortium for Political and Social Research.
 - http://www.icpsr.umich.edu/icpsrweb/ICPSR/

- **Option 2: exploit data management in place for your discipline**
 - Example: data management resources of the Consortium for Political and Social Research.

- **Option 3: personalized solution based on your requirements**
 - Provide and control

What about my current proposal?

- **If you elect to use the Purdue University Research Repository (PURR)**
 - The quotable overview is here:
 - http://vpr.hubzero.org/about/usehub
 - Pre-award staff also have a short paragraph suitable for inclusion in the “Facilities, Equipment and Other Resources” section of your proposal.

It explains the current prospect of a centrally supported PURR resource available at no direct cost to the project.
7a-d are related to **Export Control**.

<table>
<thead>
<tr>
<th>Does this project require sponsor approval of publications?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does the announcement restrict participation based on citizenship?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Does this proposal contain technical data within the statement of work that are restricted for purposes specific to military or space applications?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Does this proposal contain technical data within the statement of work that are confidential or proprietary to a company or Purdue (i.e. requires a confidentiality agreement)? If yes, list the relevant pages.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Are you receiving private **health information** that is protected by HIPAA?

| Yes | No |

Project Data

1. **Is there a conflict of interest?**
 | Yes | No |

2. **Is this a Bowen Lab project?**
 | Yes | No |

3. **Is this a Kepner Facility project?**
 | Yes | No |

4. **List any approved University Centers affiliated with this proposal.**
 | |

5. **Please identify all ITaP units which have or will contribute to this project:**
 - [] Envision Center for Data Perceptualization
 - [] Rosen Center for Advanced Computing
 - [] Other ITaP Units
 - [] None

6. **Is this proposal a resubmission of a previously submitted application?**
 | Yes | No |

7. **Are you an NSF Beginning Investigator?**
 | Yes | No |

8. **Does the funding agency require a management plan for data or digital products produced using the grant?**
 - [] Yes, and we plan to use the **Purdue University Research Repository (PURR)**
 - [] Yes, and we plan to use another option
 - [] No, funding agency does not require

9. **Will historical sites be affected?**
 | Yes | No |

 If Yes, please provide an explanation:

10. **If this project has an actual or potential impact on the environment, has an exemption been**
 | Yes | No |
Will you be uploading any data that may be considered by the University to be sensitive or restricted? REQUIRED

☐ Yes, this project may involve uploading sensitive or restricted data to PURR.

Please indicate the type of data that may be involved. Check the box if you're not sure.

☐ This project may involve government-restricted, export-controlled, or proprietary company information (without permission).

☐ This project may involve data that is governed by an Institutional Review Board (IRB) Approval Protocol.

☐ This project may involve HIPAA data or Protected Health Information.

☐ This project may involve FERPA data or student records.
Office of the University Chief Information Officer

The Office of the University Chief Information Officer strives to develop and deliver world-class computing and digital resources to Purdue faculty, staff, and students. The goals of the office are to enable research in science and engineering, provide classroom technologies to support and improve learning, and present innovative tools for engagement.

Purdue University
Rosen Center for Advanced Computing

XSEDE
Extreme Science and Engineering Discovery Environment

Purdue is a partner in XSEDE, the most advanced, powerful and robust collection of integrated digital resources and services.
HOW HUBS WORK

HUBzero is a new way for scientists and engineers to publish and share information. The latest hub will be used to study the causes and effects of earthquakes for the Network for Earthquake Engineering Simulation, or NEES. This hub joins others focused on topics such as nanotechnology, pharmaceutical products, advanced manufacturing, cancer care, assistive technologies for people with disabilities, heat-transfer issues in engineering, and several others. New hubs are being created at a rate of about one per month.

1) A scientist named Hugh creates software for scientific modeling and uploads it to the hub to share with colleagues, much as he would share a video on YouTube. Other scientists and engineers can use the tool and rate or comment on it.

2) Another researcher, Sue, runs her data on the new software tool using a simple Web interface. The demanding computations are done using cloud computing, and are automatically farmed out to available computers across the nation. Sue's data is sent to supercomputer connected to the TeraGrid, Open Science Grid, or the new DaintGrid, and she receives her results within minutes.

3) Sue has questions about her results, so she asks the community of scientists on the hub what they think about the finding.

4) A third researcher, Drew, posts a possible answer to Sue's question. Then, other scientists vote "thumbs up" or "thumbs down" on whether they agree with Drew's answer. Drew and the other scientists participate by voting on the best answer, all receiving hub points for their efforts.

5) Sue also has an idea for a new feature for the software tool, so she adds her idea to a wish list for the software on the hub. Because this is a feature she really wants, she offers a bounty of 200 of her hub points for the feature.

6) Drew and Sue decide to collaborate on their next project, which is successful, so they write a research paper and give a presentation at a conference. They post the presentation slides on the hub and then track how many users view the materials.

7) Drew and Sue use the presentation and some of the slides in his class to explain this new area of research to his students. He creates a homework assignment in which his students use Hugh's simulation tool to investigate the phenomena, and then Drew posts the assignment on the hub for other educators.
Storage space for PURR projects currently covered by central resources

<table>
<thead>
<tr>
<th>Option:</th>
<th>For what:</th>
<th>Space Available:</th>
<th>For how long:</th>
<th>For who:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default/trial projects</td>
<td>Just trying things out, or don’t need much space</td>
<td>500 MB</td>
<td>3 years</td>
<td>Anyone with a Purdue Career Account</td>
</tr>
<tr>
<td>Default data publications</td>
<td>Great for small publications</td>
<td>50 MB</td>
<td>10 years</td>
<td>Anyone with a Purdue Career Account</td>
</tr>
<tr>
<td>Supported projects</td>
<td>Funded projects with PIs from Purdue</td>
<td>100 GB</td>
<td>Life of project</td>
<td>Purdue faculty with a verifiable grant or account number</td>
</tr>
<tr>
<td>Supported data publications</td>
<td>Publishing work done on a funded project</td>
<td>10 GB</td>
<td>10 years</td>
<td>Purdue faculty with a verifiable grant or account number</td>
</tr>
</tbody>
</table>

Estimated cost of additional space

<table>
<thead>
<tr>
<th>Option:</th>
<th>Space Available:</th>
<th>For how long:</th>
<th>For who:</th>
<th>Cost:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extra project space</td>
<td>As needed</td>
<td>Life of project</td>
<td>Anyone with a Purdue Career Account</td>
<td>$2,102.57 per TE per year</td>
</tr>
<tr>
<td>Extra publication space</td>
<td>As needed</td>
<td>10 years</td>
<td>Anyone with a Purdue Career Account</td>
<td>$14,297.48 per TB</td>
</tr>
</tbody>
</table>
Applying library science to information problems

“You know thirty years ago, good laboratory practice was... you took good notes, you took fifteen or twenty data points... and you had a nice little lab book. But we’ve scaled now to getting this mega amount of information and we haven’t scaled our laboratory management practices.”

“In an ideal situation we would somehow have some sort of standard under which we named things and stored things and kept track of things and we would, you know, have a way to get this information to our students.”
Problem: Water quality research is conducted by several groups which results in various amounts and sets of data which need to be organized.
Problem: How are digital objects of dance identified, accessioned, and prepared for distribution? And what are the best practices and policies required to produce a multimedia-based dance history website?
Roles
General Library Services

Reference: assessing complex information needs
- Meet researchers in the lab, office, classroom, Starbucks
- Discuss issues/problems of all aspects of scholarly communication
- Identify resources and ways to meet those needs

Instruction: enhance finding, evaluating, using research
- Explore activities related to creating and using information
- Partner with faculty to teach various illiteracies (info, data, etc.)

Collection mgmt: appraising local collections, including data
- Identify content for different dissemination modes
- Determine selection practices for new collections

Liaison: engaging researchers in new ways, in their environments
- Discuss research initiatives, projects, outputs...
- Collaborate on funded research projects—apply library science
Specific Data Services

- Data reference
- Data mgmt planning
- Data consultation (may lead to collaborations/grants)
- Using PURR
- Promoting data DOIs
- Data mgmt education and information literacy
- Finding and using data
- Developing tools (DCP 2.0, DataBib, DMP-SAQ)
- Data visualization/GIS

- Developing data resources (LibGuides, tutorials)
- Linking data to articles and dissertations
- Promoting open access (Authors rights, IR deposit)*
- Leveraging publishing opportunities*
- Developing local collections*
- Collection mgmt of “e” (journals, data, archives)*
- Integrating systems * (i.e., finding data in Primo)

* As relates to data
Data curation is a process based on partnerships & collaborations
Questions?