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Abstract 

Plug-in Hybrid Electric Vehicles (PHEVs) will soon start to be introduced into the 

transportation sector, thereby raising a host of issues related to their use, adoption and effects 

on the electricity sector. Their introduction has the potential to significantly reduce carbon 

emissions from the transportation sector, which has led to government policies aimed at 

easing their introduction.  If their wide-spread adoption is set as a target it is imperative to 

consider the effects of existing policies that may increase or decrease their adoption rate. In 

this study, we present a micro level electricity demand model that can gauge the effects of 

PHEVs on household electricity consumption and the subsequent economic attractiveness of 

the vehicles.  We show that the electricity pricing policy available to the consumer is a very 

significant factor in the economic competitiveness of PHEVs.  Further analysis shows that the 

increasing tier electricity pricing system used in California will substantially blunt adoption 

of PHEVs in the state; and time of use electricity pricing will render PHEVs more 

economically attractive in any state. 

 

Keywords: PHEVs, Electricity Pricing, Electricity Demand Modeling  
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Introduction 

The transportation sector is a major part of the United States economy which 

predominately operates using liquid fossil fuels and, as such, has a massive demand for those 

fuels. About 70% of oil consumed in the U.S. is used in the transportation sector (EIA, 

2009b). Recent concerns about high oil prices, oil dependency, energy supply security, and 

climate change have led public and private entities to seek alternative fuels for this sector. 

Electricity is one promising alternative. In recent years, automotive companies have 

developed and refined technologies to produce more advanced vehicles that use electricity 

instead of gasoline as their main energy source.  If these vehicles become commercially 

viable, they have the potential to significantly reduce oil consumption and provide enormous 

environment benefits. Several papers have evaluated economic and environmental impacts of 

using PHEVs (EIA, 2010; EPRI, 2007; Kintner-Meyer et al., 2007; Shiau et al., 2009; Smith, 

2010; Vyas et al., 2007). However, they have not used a coherent modeling and simulation 

approach to evaluate impacts of adopting these vehicles on the household electricity usage at 

a micro level.  

We argue that policy implications on the micro level will impact the economic 

competitiveness of PHEVs. Although California currently has electricity rates which cater to 

EVs and potentially PHEVs, we show that the current increasing tier electricity pricing 

system of the state of California, here represented by PG&E’s plan, (Pacific Gas and Electric 

Company, 2009) which was designed to reduce electricity consumption, could harm the 

economic competitiveness of the PHEVs when compared with hybrid and standard vehicles. 

We examine the relative economic competitiveness of a plug-in electric hybrid vehicle 

(PHEV), a hybrid vehicle, and a standard gasoline vehicle.    The state of California and its 

electricity pricing structure is used as the base case.  California has among the highest 
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electricity prices in the country with residential rates averaging 14.42 cents per kWh in 2007, 

35% higher than the national average (EIA, 2009c), with an  increasing tier pricing scheme 

put in place presumably to discourage higher electricity consumption and the environmental 

externalities associated with electricity production (Danner, 2010), mainly air pollution and 

greenhouse gas emissions.   

 The motivation for this research was to determine what impact this electricity pricing 

regime might have on the economics of PHEVs compared with other options.  Many other 

states have flat rate electricity pricing or even declining rate systems.  To conduct the 

comparison for this analysis, we compared the existing California system with an alternative 

flat rate system with the same average cost (and equivalent revenue to the utility) assuming 

no change in the quantity demanded for electricity, compared to the base California case.  

The equal demand assumption was used to enable direct comparison of the two rate structures 

with the addition of the PHEV to the household demand. 

 The consideration of California as an example is important for a number of reasons.  

The state is the most populous in the United States, with roughly 36 million residents and an 

estimated 20 million light-duty vehicles (BTS, 2008). California is a fairly large market by 

itself.  California has also traditionally been an early adopter of environmental technologies.  

Additionally, the adoption rate of hybrid vehicles in California has typically been higher than 

the national average (HybridCars.com in partnership with Polk, 2009), meaning that a failure 

in this critical market could be a serious one for the technology. 

Electricity Pricing 

California has an increasing tiered pricing scheme for which the base level has the 

lowest price, and the price for a household increases in three additional tiers as household 

consumption increases.  These higher tiers are activated at 130%, 200%, and 300% of the 
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base level electricity usage. Additionally, the base level varies by region of the state and 

season of the year. California also has a time of use (TOU) pricing option under which the 

cost of electricity changes over the course of the day.  For that option there are three price 

periods each day in summer and two in winter.  The increasing tier pricing also applies to the 

TOU pricing regimes.  Consumers can choose to opt in to TOU pricing or not, but either way, 

consumers face the increasing tier pricing system. 

As a consequence of the push for electric vehicles in the 1990s, California also has 

electric pricing schedules available for consumers.  PG&E provides two options for 

consumers, both found in rate schedule E-9 (Pacific Gas and Electric Company, 2009); a rate 

that adds the electricity used for charging the vehicle onto the existing household usage and 

another which meters the vehicle separately. These two scenarios provide different benefits to 

the consumers, a subject that will be addressed later in this study. An option that is offered to 

customers but not discussed in this study is the ability of the utility to limit the hours that the 

household can use electricity for PHEV charging. This option is not discussed since this 

involves primarily system wide benefits, which are not the focus of the paper.  

PHEVs  

Two major types of vehicles are emerging, pure Electric Vehicles (EVs) and Plug-in 

Hybrid Electric Vehicles (PHEVs).  EVs rely only on electricity for propulsion while PHEVs 

use electricity stored in a battery as the primary means of propulsion, but can also contain a 

backup power source, typically gasoline. This study focuses only on PHEVs using one 

commercially available vehicle as the basis for parameter choices. The technical 

specifications of future commercially available PHEVs have been widely debated.  The 

battery size, charging time, maximum discharge rate, weight, life and, especially, cost are all 

critical parameters that will affect the market penetration and ultimately the societal benefits 

of PHEVs.  Argonne National Laboratory (Vyas et al., 2007)  has examined a number of 
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different PHEV and traditional hybrid vehicle configurations in order to perform a cost-

benefit analysis on the potential fuel savings gained for a household using a PHEV.  The 

Argonne results show that for a PHEV with an all-electric range of approximately 40 miles, 

the net present value of fuel savings is about $1,380. Another study (Shiau et al., 2009) 

focused on battery weight and charging patterns, and their effect on the economic and 

environmental benefits of PHEVs.  It indicates that for small battery sizes, those allowing less 

than 20 miles of driving in all-electric mode, PHEVs could be both economically and 

environmentally superior to both hybrids and conventional vehicles.  Bradley and Frank 

reviewed the design specifications for the vehicle architecture, energy management systems, 

drivetrain, and energy storage systems for a number of demonstration vehicles and concluded 

that CO2 reductions are projected to be between 40% and 53% for a compact PHEV, 

depending on the all-electric range (Bradley and Frank, 2009) . A recent study on PHEV 

implementation in Ireland concluded that on a per km basis, PHEVs offer potential reductions 

in primary energy requirements and carbon dioxide intensity (Smith, 2010). However, in the 

2009 Annual Energy Outlook (EIA, 2009a) , EIA concludes unless gasoline prices reach 

$6.00 a gallon, PHEVs would not be attractive to consumers. A study by the NRC concluded 

the figure to be somewhat less at $4.00 (NRC Committee on Assessment of Resource Needs 

for Fuel Cell and Hydrogen Technologies, 2010). 

Several studies have been conducted to estimate the impacts of adopting PHEVs on 

the United States electricity grid.  For example, Kintner-Meyer et al. have estimated the 

maximum number of PHEVs that the existing electricity capacity could accommodate 

without additional generating capacity (Kintner-Meyer et al., 2007).  They simply assume 

that all electricity generating capacity during non-peak hours will be used to charge PHEVs, 

in a “valley-filling” technique, resulting in up to 73% of the U.S light duty vehicle fleet 

supported.  Another similar study that assumed that the utilities could control vehicle 
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charging was performed by the National Renewable Energy Laboratory which indicated a 

50% penetration of PHEVs would increase per capita electricity demand by around 5-10% 

(Denholm and Short, 2006) . While these studies provide boundaries for the maximum 

possible benefits gained from the widespread introduction of PHEVS, their simplistic 

charging assumptions dictate that their results cannot be used as credible forecasts of the type 

needed to make policy and infrastructure decisions.  

A more detailed study that takes into account more realistic charging scenarios was 

performed using Vermont as the study region (Letendre and Watts, 2008).  Four charging 

scenarios are examined: uncontrolled evening charging, twice per day charging, delayed 

nighttime charging and optimal nighttime charging.  Large increases in the state-wide peak 

load are predicted under the first two charging scenarios while the latter two tend to even the 

load over the course of the day.  One notable drawback of the study is that the example 

PHEV used in the calculations had an all electric range of only 20 miles and was assumed to 

require a full charge every time that it was plugged in.  This is a limitation shared by perhaps 

the most similar report (Lemoine et al., 2007)  to the present study.  The Lemoine et al. 

report, which examines the role of PHEVs in the California market, also makes the 

assumption that every trip is long enough to fully deplete the battery.  This neglects the 

transportation aspect of the problem in which trip length and duration may play a role in the 

amount of electricity needed to return the battery to the fully charged state.  Within the report 

three charging scenarios are examined: optimal charging, evening charging and twice per day 

charging.  For each scenario a comparison of the annual fuel costs per vehicle is conducted 

for standard vehicles and PHEVs with varying electricity and gasoline prices. According to 

the report, a PHEV with an all electric range of 20 miles is expected to get about $400.00 in 

fuel savings per year when compared to a conventional vehicle. It is not clear, however, what 

assumptions the authors made about electricity pricing when calculating net present value of 
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fuel savings.  Parks et al. provides an alternative charging scenario based on a small dataset 

derived from GPS data in the St.Louis area (Parks et al., 2007). While suitable in the context 

of their study, a more representative dataset is needed for a statewide analysis  as conducted 

in the present study. 

Methodology 

In this study, we used a combination of electricity load forecasting methods and 

economic analysis in order to determine the effect of a PHEV on a residential household. 

Electricity forecasting models in general can be divided into two groups: top-down and 

bottom-up approaches(Swan and Ugursal, 2009). The first approach forecasts future 

consumption of electricity based on historical data at high aggregation levels. The most 

common forecasting methods such as regression, time series, fuzzy logic, neural networks 

and expert systems fall in this category(Alfares and Nazeeruddin, 2002; Nowicka-Zagrajek 

and Weron, 2002; Tzafestas and Tzafestas, 2001). All of the methods described rely on huge 

amounts of historical data. Incremental changes in electricity consumption that occur slowly 

may be recognized by these top-down forecasting models, but forecasting radical changes in 

electricity usage patterns are confounding due to reliance of these models on past data. 

The bottom-up approach forecasts consumption of electricity at the household level 

using engineering modules which break household electricity usage down to the appliance 

level (Larsen and Nesbakken, 2004; Paatero and Lund, 2006). The former model is an 

engineering model which forecasts electricity usage at the household level for Norway. The 

latter model is a more advanced bottom-up model which has been developed and applied to 

Finnish households. This model assigns appliances to a representative household based upon 

the country-level appliance saturation rates.  Each appliance is assigned an hourly starting 

probability for both weekday and weekend use.  A consumption cycle and standby load are 

specified for when the appliance is in or out of use.  Each instance of an appliance in each 
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instance of a household is then determined to be on or off for each hour of the day according 

the results of comparing a random number to the hourly starting probability.  The daily 

household power usage can then be calculated by summing the demand of each of the 

individual appliances for each hour of the day based upon their usage status.  In addition a 

seasonal load factor adjusts the results to correspond to the differences in daily demand over 

the course of the year.  The results of a number of runs of the model can be combined in 

order to determine an average household use profile.   

Since the bottom-up models break household electricity usage down to the appliance 

level, one can add PHEVs to the list of household appliances and examine impacts of 

adopting PHEVs on energy usage. In this paper we built and expanded a bottom-up 

framework based on the Paatero & Lund framework to investigate impacts of adopting 

PHEVs on electricity consumption at the household level. The framework for the model is 

built on two major components: a data set and a simulation engine.  The first component 

includes a list of  the appliances that may appear in a household, appliance saturation levels, 

daily frequency at which a particular appliance is used, usage profile of an individual 

appliance, standby power needed by a particular appliance and the consumption cycle of an 

appliance. The second component includes a set of stochastic simulation processes which 

generate temporal electricity consumption profiles for all appliances of each household 

separately on the hourly time scale and sums the individual appliances to generate an 

electricity load profile for an average household.  

The present study differs from those found in the literature in a number of significant 

ways.  First is the scope: to the best of the authors’ knowledge there have not been any 

probabilistic engineering household electricity load models adapted to include PHEVs.  Since 

the adoption of PHEVs at the household level will greatly change the electricity load profile 

of the home, it is important to consider the electricity usage patterns as a whole in order to 
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gauge the true cost, especially when time of use electricity pricing is in effect.  This bottom-

up view will help to provide a more accurate picture of PHEV adoption, and hence benefits, 

than the macro view adopted in previous studies.  Secondly the present study uses a number 

of assumptions that more closely reflect the anticipated future PHEV specifications and usage 

patterns.  While the majority of previous studies have focused on PHEVs with an all-electric 

range of 20 miles, we have chosen to use 40 miles as the distance before charge sustaining 

mode is activated.  This is done to reflect the anticipated range of the Chevrolet Volt PHEV 

(General Motors Corp.) scheduled to be commercially available in late 2010.  Additionally, 

while previous studies have assumed that due to the short battery range every charge will be a 

full charge, this study allows for the possibility of the longer charge depleting mode 

considered, providing enough all electric range to fulfill a household’s daily driving needs.  

Each household’s daily driving distance is determined through a sampling of national daily 

distance driven distribution.  This daily distance can then be converted to an amount of 

battery depletion or combination of full battery depletion and gasoline usage.  The accuracy 

of the household load amount and timing due to PHEV use can only be improved by 

incorporating actual transportation usage data into the model.  Lastly, the authors believe that 

underlying all factors, the way that electricity is priced would affect how attractive a PHEV 

would appear to a consumer, a point that has not been fully examined in the literature. It is 

through this combination of more realistic assumptions about commercial PHEV 

specifications and the integration of the PHEV usage patterns with a household electricity 

load profile model that the authors believe a more accurate picture of the costs and benefits 

associated with PHEV usage can be gained.  

Baseline Appliances 

Electricity demand for a household in the study is comprised of two portions: baseline 

household electricity demand and the PHEV electricity demand. Baseline electricity demand 
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is determined from a set of common household appliances present in the household. Data on 

the availability of appliances in California households was gathered from the United States 

Energy Information Administration’s Residential Energy Consumption Survey (EIA, 2008).  

Table A1 of Appendix A presents a full list of appliances and their corresponding saturation 

level are included. The presence of air conditioning as an appliance necessitates the use of 

summer and winter temperature distributions.  For every day a maximum temperature is 

drawn from the distribution for the temperature, and if the temperature is above the baseline 

of 65o F the air conditioning load is specified according to a correlation from the California 

Independent System Operator Corporation (CASIO) (CAISO, 2007).  Additionally, for all 

appliances besides air conditioning, a load pre-factor distribution was created to match the 

CAISO historical data for both weekdays and weekends in both the summer and winter 

seasons using a regression tool.  Household electricity usage for lighting was adopted from a 

survey of California households (Heschong Mahone Group, 1999).  It is important to note 

that this data differs significantly from the Energy Information Administration (EIA) 

Residential Energy Consumption Survey data. The annual household energy use for lighting 

in the Heschong Mahone Group report is almost twice that of the EIA report.  The Heschong 

Mahone Group data was chosen as it is California specific while the EIA data is an average 

for all US households.  Washing machine and water heating data was adapted from a study 

by Lawrence Berkeley National Laboratory (Lutz et al., 1996).  Standby power requirements 

for appliances such as televisions, DVD players, set-top boxes, computers and answering 

machines were taken from a study of standby power consumption in California homes (Ross 

and Meier, 2002). Other hourly usage probabilities for all other appliances were adapted from 

the Residential Energy Consumption Survey (EIA, 2008) and the 2008 Buildings Energy 

Data Book (D&R International, 2009).  A list for the power consumption cycles for the 

appliances can be found in Table A2 of Appendix A, and a full list of the hourly usage 
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probabilities used for both weekdays and weekends can be found in Tables A3 and A4 of 

Appendix A. 

PHEVs 

 PHEVs are assumed to discharge linearly with respect to the distance travelled. 

Electricity stored within the battery would be discharged first for mobility in the first 40 

miles of usage and subsequent travel assumes a charge sustaining mode where gasoline is 

consumed. Although the battery capacity of the PHEV is 16 kWh, the effective capacity is 

assumed to be 8.8 kWh. This corresponds to approximately 0.22kWh per electric mile. The 

PHEVs are also assumed to be charged from a conventional 110V power outlet and a full 

charge of 8.8 kWh would require approximately 8 hours of charging time after taking into 

account battery and charger inefficiencies whose values are taken to be 0.85 and 0.82 

respectively (Duvall, 2002).  

The PHEV in this study is compared with two comparable alternate vehicles, a regular 

internal combustion engine vehicle (ICE) and a conventional hybrid vehicle. The Chevrolet 

Cobalt represents the former while the Toyota Prius the latter.  Both vehicles are viewed to be 

comparable in performance and size. Although the Prius also contains a battery pack that can 

supplement propulsion, it differs from the PHEV such that it cannot rely solely on electricity 

for mobility. Hence it is still highly dependent on gasoline as an energy source. The 

parameters used in modeling the vehicles will be presented in a later section. 

Charging Scenarios 

 An important aspect of PHEV use is the charging pattern chosen.  Two charging 

pattern scenarios have been examined: off-peak charging and uncontrolled charging.  The 

charging scenarios are important because they affect the timing of the additional electricity 

usage due to PHEVs.  This is especially important when considering electricity demand at the 
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utility level and can also play a significant role in the operating costs of PHEVs when time of 

use pricing schemes are in effect. 

The off-peak charging scenario is similar to many of the charging scenarios thus far 

reported in the literature. For this scenario it is assumed that there is some form of utility 

regulation, or consumer self-governance due to higher peak prices, that allows charging of a 

PHEV to only occur during off-peak electricity hours.  Hourly starting probabilities are then 

assigned under the condition that the charging must be completed before the next partial-peak 

period begins.  The hourly starting probabilities that make up the two charging scenarios can 

be found in Figure 1. 

  For the uncontrolled case charging, data on hourly vehicle usage (FHWA, 2009) has 

been used in order to assign hourly starting probabilities for a household PHEV. In order to 

obtain this data, a custom table was built from the NHTS online analysis tool with an output 

of annualized vehicle trips against trip start time. This data gives the time periods when the 

vehicle is most likely on the road away from home, the inverse being that the vehicle is not 

on the road and thus has a greater likelihood of being at the household residence. A vehicle 

determined to be at home is thus able to begin a charging cycle if selected.  The uncontrolled 

charging scenario is seen as a more accurate representation of possible PHEV charging 

patterns than typical assumptions such as utility controlled “optimal” charging patterns or 

evening only charging, in environments without consumer incentives to adopt such policies.  

By using the uncontrolled charging pattern we may gain a better understanding of how 

consumer availability driven charging may affect the electricity system and the vehicle 

charging costs associated with non-optimal charging.   
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Figure 1: Charging Schedules for PHEV – Hourly Starting Probabilities 

 

Economic Analysis Assumptions 

 The economic parameters used for the three vehicles are included in the Table 1.  For 

all three vehicles, a nominal loan interest rate of 6% over 5 years was assumed.  The vehicle 

life was assumed to be 10 years, with a 15% resale value at the end of 10 years (in real 

terms).  Maintenance and insurance were assumed to be the same for all three vehicles and 

battery lifespan is assumed to be 100,000 miles. Vehicle use per day was determined from 

data from the Bureau of Transportation Statistics, where both a daily frequency of 2.53 for 

vehicle trips and a distribution of trip distances were utilized to determine the daily distance 

travelled per vehicle (BTS, 2004). The fitted distribution for trip distances can be found in 

Figure A5 in Appendix A.   

 Petroleum price projections were taken from the DOE Energy Information Agency 

2010 reference and high price scenarios (EIA, 2010).  In the reference case, real oil prices 

increase 2.6% per year and in the high price case, 7.2% per year. Both cases are for the time 

period of 2010 to 2020.  The prices range from $67 to $98 in the reference case, and $67 to 
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$176 in the high crude oil projection.  To convert the DOE crude oil price projection to 

California retail gasoline price, we used DOE historic monthly data on the California gasoline 

price and U.S. composite refiner acquisition cost of crude oil (EIA, 2009d).  The R2 for this 

regression was 0.925.  The starting gasoline price for both the reference case and high oil 

price case was $2.95. It is important to note that California gasoline prices are higher than the 

national average.  The assumed general inflation rate is 3%.  Battery replacement costs are 

assumed to decline 7% in real terms per year (EIA, 2009a).  The Volt and Prius batteries are 

replaced at the end of year 7.  A real interest rate of 6% was used for the net present value 

calculations. Tariff rates for Californian households were obtained from the tariff book of the 

Pacific Gas and Electric Company. A summary of the rates can be found in Table 2. 

Sensitivity analysis also showed that the direction of the results was not very sensitive to the 

interest rate.  

Table 1: Summary of economic data and key parameters for the various vehicles. 

Item 
GM 

Volt 

Chevrolet 

Cobalt 

Toyota 

Prius 

Purchase price 41,000 16,000 24,000 

Federal tax credit 7,500   

Net purchase 

price 
33,500 16,000 24,000 

MPG 50* 27.5 50 

Battery 

replacement cost 
12,000  3,000 

Charging time 8 hr   

*For travel beyond 40 miles/charge. 
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Table 2: Summary of electricity tariff rates for a California household. The tariff rates were obtained from the 
Pacific Gas and Electric Company Tariff Book rate E-9 and E-6 (22). The alternative flat rate tariff was 
calculated at an average cost to the customer but with the same revenue to the utility. 

  Summer Tariff Rates Winter Tariff Rates 

Time of Use Service 

Standard 

Time of Use Service 

Standard   Off Peak Part Peak Peak Off Peak Part Peak 

Tier 1 $0.05 $0.11 $0.31 $0.12 $0.06 $0.11 $0.12 

Tier 2 $0.05 $0.11 $0.31 $0.13 $0.06 $0.11 $0.13 

Tier 3 $0.11 $0.17 $0.37 $0.26 $0.11 $0.17 $0.26 

Tier 4 $0.15 $0.21 $0.41 $0.38 $0.16 $0.21 $0.38 

Tier 5 $0.17 $0.23 $0.43 $0.44 $0.18 $0.23 $0.44 

Flat Rate $0.05 $0.11 $0.31 $0.12 $0.07 $0.12 $0.13 

 

Model Results 

California Validation 

Before we may consider the effects of PHEV use on the electricity load profile of 

California we must first confirm that our household load profile reflects that of a typical 

California household before the introduction of a PHEV.  Data for this comparison is taken 

from the recent California Statewide Pricing Pilot (SPP) which  studied  residential response 

to peak pricing of electricity (Herter et al., 2007).    Average household summer daily 

electricity consumption from the reference data is 15.9 kWh day-1 while the corresponding 

value from the current model is 15.17 kWh day-1. As may be seen in Figure 2, the California 

demand model tracks the summer average household demand from the literature quite well, 

with only a brief period of underestimation during the morning hours. 

Average household winter daily electricity consumption from the reference data is 

18.81 kWh day-1 while the corresponding value from the current model is 18.06 kWh day-1.   

As from Figure 3 the model shows a slightly earlier and lower peak period than the literature 
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data, but overall the model tracks well with the reference load profile.  

 

Figure 2: Average Californian Household Demand for Summer without PHEVs 

 

 

Figure 3: Average Californian Household Demand for Winter without PHEVs 

 

PHEV Addition 
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model.  As mentioned previously the specifications

basis for a PHEV in the model.  Comparing the breakdown of household electricity use with 

and without a PHEV, we see that the PHEV requires 37% of the household daily electricity 

usage, (Figure 4).   

Figure 4: Breakdown of electricity consumption of an average Californian household in summer with the 
addition of PHEVs 
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of PHEVs could lead to a very different electricity load profile at the utility level.  For the 
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course of the day with a roughly 30% increase during the evening peak period.  This is due to 

the long charging times examined in the scenario which dictate that even though th
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low probability of starting a charge during the day many charging sessions will continue into 

the peak periods.  The summer off-peak only charging scenario shown in Figure 6 produces a 

more drastic increase almost doubling the peak load but shifting the peak by three hours.  The 

same scenario performed for the winter, and shown in Figure 7, also produces an increased 

off-set evening peak but also creates a new morning peak of almost equal magnitude as the 

evening peak. 



 

Figure 5: Load profile of a Californian household on an average summer day with no restrictions on PHEV 
charging 

Figure 6: Load profile of a Californian household on an average summer day following summer off
charging 
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: Load profile of a Californian household on an average summer day with no restrictions on PHEV 

Load profile of a Californian household on an average summer day following summer off
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: Load profile of a Californian household on an average summer day with no restrictions on PHEV 

 

Load profile of a Californian household on an average summer day following summer off-peak PHEV 



 

 

Figure 7: Load profile of a Californian household on an average winter day following winter off
charging 
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: Load profile of a Californian household on an average winter day following winter off

Economic Analysis and Discussion 
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the same revenue to the utility for a base case scenario. It can be 
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the tiered breakdown of pricing. A flat rate pricing that confers the same revenue to the utility 

at base case could increase the attractiveness of PHEVs with respect to the other vehicle 

component in the difference between a single meter and a separate 

is the cost of the additional meter. At about $0.41 a day, it represents a 

3 5 7 9 11 13 15 17 19 21 23

Hour Ending Consumption Period

Off-Peak Winter Charging

Average Winter Day

 

: Load profile of a Californian household on an average winter day following winter off-peak PHEV 
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significant cost to the household. Since it is such a significant cost, an alternate scenario in 

which the separate meter is subsidized by the relevant authority is also examined.  

PHEVs are assumed to charge only during off-peak and shoulder peak periods for 

TOU pricing. Results are also provided for the DOE reference and high oil price cases. Table 

3 contains the key results.  The values in Table 3 are the difference in net present value 

(NPV) between the Volt and the other options.  A negative value indicates that the Volt is 

less attractive than the alternative.  The alternative pricing schemes suggested here represent 

schemes that would make the PHEVs more attractive to potential consumers. Alternate 

schemes to non TOU and TOU consumers represent non-tiered rates while the alternative 

pricing scheme for TOU separate meter customers represent a scenario where the daily meter 

charge is subsidized by a third party. 

Table 3: Differences between the net present value of PHEV and other vehicle options under alternative 
electricity pricing systems (figures are in US$) 

Case Oil Price 

Non TOU TOU TOU Separate Meter 

Prius Cobalt Prius Cobalt Prius Cobalt 

Tiered Reference -11068 -12988 -7499 -9419 -7567 -9487 

Tiered High Price -9594 -9867 -6025 -6298 -6093 -6366 

Alternate Reference -7859 -9780 -6346 -8267 -6472 -8393 

Alternate High Price  -6386 -6658 -4873 -5145 -4999 -5271 

The bottom line is that with the current California pricing system, the PHEV is a 

much less attractive option than either the Prius or the Cobalt under either reference or high 

oil price assumptions.  Another clear conclusion is that the PHEV option is considerably 

more attractive under TOU pricing than standard pricing options.  This result makes sense 

because with TOU pricing the PHEV can be charged during off-peak times when electricity 

is less expensive.  The two TOU options available to Californians present very similar 

benefits to consumers with NPV values differing only by a small margin, with the normal 

TOU plan being slightly more attractive. The other major conclusion is that the PHEV option 
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becomes much more attractive with flat rate pricing with or without TOU pricing. For the 

reference case, the PHEV is still less attractive than the other options, hampered by the high 

price of the PHEV.  For example, for the reference case comparison with the Prius with no 

TOU pricing, the California rate structure yields a NPV advantage for the Prius of $11,068 

whereas the flat rate pricing  reduces the advantage of the Prius to  $7,859, a difference of 

$3,209.  With TOU pricing and the flat rate pricing, the Prius advantage drops further to  

$6,346, still significantly less competitive than its peers. Under the high oil price scenario, a 

flat rate TOU pricing scheme provides the most competitive circumstance for the PHEV 

when compared to its rivals. If the household opts for a separate meter for the PHEV charger, 

the daily meter charge needs to be waived or heavily subsidized for the vehicle to be 

economically competitive. 

 Another way to characterize the differences caused by the pricing policy is to 

calculate the breakeven crude oil price between the PHEV and the other vehicle options 

under California and flat rate pricing (Figure 8). The breakeven crude oil price is the point at 

or above which the consumer would prefer the PHEV on purely economic grounds.  

Compared with the Prius, $254 crude oil would be required under the current California 

pricing scheme and $227 under flat rate (and TOU) pricing to make the PHEV an economic 

winner, a difference of 11%.  These crude oil prices reflect California gasoline prices of 

$8.24 and $7.29 per gallon respectively.  Similarly, against the Cobalt, the breakeven falls 

from $184 under California pricing to $171 under flat rate pricing.  This corresponds to 

gasoline prices of $6.26 and $5.91 per gallon.  Interestingly, these values are much higher 

than the around $120 per barrel crude oil breakeven values for other alternative energy 

sources (Tyner, 2008), such as cellulosic biofuels.  In California, this means that PHEVs are 

significantly less more competitive than these alternate fuels even if electricity prices policies 

are structured to provide maximum advantage for PHEVs. 
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Figure 8: Breakeven crude oil price between the PHEV and other vehicle options 
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Figure 9: Battery costs switching values assuming reference case parameters 

 

Concluding Remarks 

The combined simulation/economic modeling exercise was used to conduct a cost 

effectiveness analysis for owning a PHEV in the California market.  A coherent load 

generating model capable of micro-scale prediction has been adapted and used in this 

analysis. Such a model has the potential to be used in more detailed studies with regards to 

polices affecting PHEVs or any other devices that can be characterized as an appliance in the 

household. From this study it appears that the anticipated first generation PHEVs will not be 

economically competitive with conventional and hybrid vehicles, even with a $7,500 tax 

incentive. Its competitiveness is further hampered by the current structure of the electricity 

pricing structure in California. The high costs of electricity in California when compared to 

the nation at large deal another blow to the PHEVs ability to replace gasoline with electricity 

in a cost-efficient manner.   

 The tiered electricity pricing regime in use plays an important role.  California 

adopted the increasing tier pricing system to discourage electricity consumption for 

environmental reasons.  That is, less electricity consumption results in lower adverse 

0

1000

2000

3000

4000

5000

6000

7000

Prius Tiered 

Pricing 

Scheme

Prius 

Alternative 

Pricing 

Scheme

Cobalt Tiered 

Pricing 

Scheme

Cobalt 

Alternative 

Pricing 

Scheme

C
o

st
 o

f 
B

a
tt

e
ry

$5,428

$6,438

$4,754

$3,744



26 

 

environmental consequences including lower greenhouse gas emissions.  However, here the 

law of unintended consequences comes into play.  Namely, the same pricing structure, while 

achieving environmental gains under normal circumstances, now discourages PHEV adoption 

and use and thus leads to adverse environmental outcomes.  Clearly, California will want to 

reconsider its current rate structure if it wants to be able to achieve the clean air and GHG 

benefits possible from PHEV adoption in the state. 

 The second major conclusion is that PHEVs are economically more attractive under 

TOU pricing than under standard electricity pricing. That stands to reason because most of 

the vehicle charging would be in the evening during off-peak times.  Although California 

already has prior plans that provide TOU pricing for EVs, this insight is still valuable for 

other states that provide only flat rate pricing schedules. Hence other states that want to 

encourage PHEV adoption should consider TOU pricing. 

 Separate metering provides a cheaper alternative for households electricity cost-wise 

but with the added burden of additional meter charges. If there could be options to subsidize 

this cost or if cheaper metering technology were available, separate metering could provide 

economic benefits on par with removing tiered electricity pricing. No matter what options 

California uses to resolve the contradiction of its standard “green” electricity pricing and aim 

to promote PHEVs at the same time, it is certainly probable that: if nothing is done, the 

current rate structure will have the unintended consequence of  discouraging PHEV adoption 

in California.  
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Appendix A 

Major data items used in this paper 
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TableA1: Full list of appliances included in the model for an average Californian household 

Appliance 
California 

Saturation Level 

Electric Stove 0.35 

Electric Oven 0.4 

Microwave Oven 0.85 

Coffee Maker 0.52 

Refrigerator 1 

2nd Refrigerator 0.21 

Freezer 0.18 

Dishwasher 0.55 

Clothes Washer 0.76 

Tumble Dryer 0.35 

Television 0.99 

2nd Television 0.35 

3rd Television 0.21 

Set Top Box 0.78 

Video Recorder 0.79 

DVD 0.84 

Radio/Player 0.81 

Personal Computer 0.74 

Printer 0.65 

Lighting 1 

Central Air Conditioning 0.45 

Room Air Conditioning 0.16 

Water Heating 0.11 

Cordless Phone 0.8 

Answering Machine 0.66 

Electric Space Heating 0.28 

Pool Pumps 0.12 

Other Occasional Loads 1 

 

 

  



31 

 

TableA2: Data for power consumption cycles for appliances 

Appliance Power Time Power Time Power Time Power Time Standby Power 
Weekday Daily 

Frequency 

Weekend Daily 

Frequency 

Stove and Oven 

1050 12 525 18 220 12 
  

0 

0.7 0.72 

1100 12 550 6 
    

1 1.1 

2100 24 700 6 1400 6 0 6 0.5 0.5 

Microwave Oven 1500 20 
      

3 0.98 1 

Coffee Maker 1000 6 105 20 
    

0 0.98 1 

Refrigerator 245 14 0 22 
    

0 45 45 

Freezer 165 14 0 22 
    

0 45 45 

Dishwasher 1800 18 220 18 1800 6 220 12 0 0.62 0.63 

Clothes Washer 
2150 12 210 24 450 6 

  
0 

0.88 0.9 

2150 18 210 24 450 6 
  

0.45 0.45 

Tumble Dryer 3250 80 
      

0 0.78 0.8 

Television 
113 93 

      
4 

1.95 2.12 

195 150 
      

0.65 0.71 

2nd/3rd Television 86 60 
      

4 0.28 0.3 

Video Recorder / DVD /Set Top 

Box 
0 0 

      
9/9/20 0 0 

Radio/Player 30 60 
      

6 4.18 4.54 

Personal Computer 212 60 
      

3 3 3.5 

Printer 600 5 
      

4 0.78 0.83 

Lighting 
62 140 

      
0 

25 25 

72 530 
      

1 1 

Other Occasional Loads 1000 30 
      

3 0.14 0.15 

Central Air Conditioning 4000 220 
      

0 0.7 0.85 

Room Airconditioning 1500 220 
      

0 0.7 0.85 

Water Heater 1175 30 
      

0 10 10.5 

Telephone/Answering Machine 0 0 
      

2.1/2.2 0 0 

Electric Space Heating 2000 120 
      

0 2.5 2.6 

Pool Pump 1000 15 
      

0 10 11 
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TableA3: Hourly usage probabilities for weekdays 

Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

Stove and Oven 0.20 0.20 0.40 0.40 1.78 2.59 3.19 3.83 3.70 4.13 4.29 4.15 3.89 4.46 5.79 8.76 10.00 10.30 9.24 8.15 5.82 2.79 1.51 0.36 

Microwave Oven 0.20 0.20 0.40 0.40 1.78 2.59 3.19 3.83 3.70 4.13 4.29 4.15 3.89 4.46 5.79 8.76 10.00 10.30 9.24 8.15 5.82 2.79 1.51 0.36 

Coffee Maker 0.20 0.20 0.40 0.40 1.78 2.59 3.19 3.83 3.70 4.13 4.29 4.15 3.89 4.46 5.79 8.76 10.00 10.30 9.24 8.15 5.82 2.79 1.51 0.36 

Refrigerator 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 

Freezer 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 

Dishwasher 2.33 2.33 2.33 2.42 2.59 3.46 4.06 4.32 4.32 4.15 3.98 3.89 4.15 4.67 4.93 5.19 5.62 6.40 7.09 7.52 5.62 3.46 2.85 2.33 

Clothes Washer 2.60 1.80 1.60 1.60 1.60 2.08 3.20 4.40 5.60 5.64 5.20 4.80 4.40 4.40 4.80 5.00 5.32 5.40 5.48 5.60 5.72 5.80 4.80 3.20 

Tumble Dryer 2.60 1.80 1.60 1.60 1.60 2.08 3.20 4.40 5.60 5.64 5.20 4.80 4.40 4.40 4.80 5.00 5.32 5.40 5.48 5.60 5.72 5.80 4.80 3.20 

Television 2.40 1.20 0.70 0.60 0.70 1.30 2.10 2.45 3.35 3.20 3.20 3.84 3.84 4.00 4.80 6.39 7.99 7.99 7.99 9.59 7.99 6.39 4.80 3.20 

Set Top Box 2.40 1.20 0.70 0.60 0.70 1.30 2.10 2.45 3.35 3.20 3.20 3.84 3.84 4.00 4.80 6.39 7.99 7.99 7.99 9.59 7.99 6.39 4.80 3.20 

Video Recorder 2.40 1.20 0.70 0.60 0.70 1.30 2.10 2.45 3.35 3.20 3.20 3.84 3.84 4.00 4.80 6.39 7.99 7.99 7.99 9.59 7.99 6.39 4.80 3.20 

DVD 2.40 1.20 0.70 0.60 0.70 1.30 2.10 2.45 3.35 3.20 3.20 3.84 3.84 4.00 4.80 6.39 7.99 7.99 7.99 9.59 7.99 6.39 4.80 3.20 

Radio/Player 2.40 1.20 0.70 0.60 0.70 1.30 2.10 2.45 3.35 3.20 3.20 3.84 3.84 4.00 4.80 6.39 7.99 7.99 7.99 9.59 7.99 6.39 4.80 3.20 

Personal Computer 2.40 1.20 0.70 0.60 0.70 1.30 2.10 2.45 3.35 3.20 3.20 3.84 3.84 4.00 4.80 6.39 7.99 7.99 7.99 9.59 7.99 6.39 4.80 3.20 

Printer 2.40 1.20 0.70 0.60 0.70 1.30 2.10 2.45 3.35 3.20 3.20 3.84 3.84 4.00 4.80 6.39 7.99 7.99 7.99 9.59 7.99 6.39 4.80 3.20 

Lighting 1.89 1.68 1.89 2.10 3.15 4.20 3.99 3.36 3.15 2.94 2.73 2.10 2.10 2.10 2.31 3.15 4.20 8.40 11.55 11.55 9.45 6.30 3.36 2.31 

Other Occasional Loads 1.03 0.83 0.83 0.83 1.03 2.04 3.06 3.24 3.44 3.54 3.64 3.74 3.94 4.14 4.55 4.96 5.79 6.70 7.71 8.51 9.01 8.10 5.67 3.66 

Central Air Conditioning 1.49 1.22 1.02 0.68 0.54 0.50 0.45 1.04 1.22 1.63 2.85 3.73 5.15 7.18 9.19 10.57 11.25 10.98 9.08 6.50 5.15 3.73 2.85 2.03 

Room Air Conditioning 1.49 1.22 1.02 0.68 0.54 0.50 0.45 1.04 1.22 1.63 2.85 3.73 5.15 7.18 9.19 10.57 11.25 10.98 9.08 6.50 5.15 3.73 2.85 2.03 

Water Heating 1.40 0.80 0.90 1.10 2.00 4.40 8.90 10.70 8.90 6.60 5.20 3.80 3.60 3.30 3.20 2.60 4.20 4.80 5.20 4.70 4.20 3.90 3.60 2.20 

Telephone 3.40 1.94 0.87 0.77 0.87 0.97 0.97 1.46 2.43 3.40 3.88 4.85 4.85 5.93 6.13 6.80 6.80 6.80 7.77 8.25 6.80 5.34 4.85 3.88 

Answering Machine 3.40 1.94 0.87 0.77 0.87 0.97 0.97 1.46 2.43 3.40 3.88 4.85 4.85 5.93 6.13 6.80 6.80 6.80 7.77 8.25 6.80 5.34 4.85 3.88 

Electric Space Heating 3.44 2.99 3.01 3.14 3.31 4.12 5.37 5.59 5.54 5.05 4.64 4.43 4.17 3.69 3.57 3.48 3.93 4.73 4.85 4.81 4.64 4.17 3.95 3.39 

Pool Pump 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.17 4.33 4.53 4.53 4.53 4.53 4.53 5.17 5.17 5.82 7.12 6.47 5.17 3.88 3.10 3.10 3.10 
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TableA4: Hourly usage probabilities for weekends 

Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

Stove and Oven 0.37 0.05 0.00 0.00 0.00 0.17 1.72 2.65 4.37 5.94 6.97 7.86 7.92 7.15 6.39 5.89 6.78 7.41 7.32 7.23 6.93 4.09 2.30 1.02 

Microwave Oven 0.37 0.05 0.00 0.00 0.00 0.17 1.72 2.65 4.37 5.94 6.97 7.86 7.92 7.15 6.39 5.89 6.78 7.41 7.32 7.23 6.93 4.09 2.30 1.02 

Coffee Maker 0.37 0.05 0.00 0.00 0.00 0.17 1.72 2.65 4.37 5.94 6.97 7.86 7.92 7.15 6.39 5.89 6.78 7.41 7.32 7.23 6.93 4.09 2.30 1.02 

Refrigerator 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 

Freezer 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 

Dishwasher 1.73 0.96 0.40 0.40 0.40 0.96 1.73 2.93 3.75 4.58 4.68 4.68 4.68 4.68 4.68 6.11 6.83 7.16 7.80 8.60 8.16 7.01 5.05 2.03 

Clothes Washer 1.73 0.96 0.40 0.40 0.40 0.96 1.73 2.93 3.75 4.58 4.68 4.68 4.68 4.68 4.68 6.11 6.83 7.16 7.80 8.60 8.16 7.01 5.05 2.03 

Tumble Dryer 1.73 0.96 0.40 0.40 0.40 0.96 1.73 2.93 3.75 4.58 4.68 4.68 4.68 4.68 4.68 6.11 6.83 7.16 7.80 8.60 8.16 7.01 5.05 2.03 

Television 3.40 1.94 0.87 0.77 0.87 0.97 0.97 1.46 2.43 3.40 3.88 4.85 4.85 5.93 6.13 6.80 6.80 6.80 7.77 8.25 6.80 5.34 4.85 3.88 

Set Top Box 3.40 1.94 0.87 0.77 0.87 0.97 0.97 1.46 2.43 3.40 3.88 4.85 4.85 5.93 6.13 6.80 6.80 6.80 7.77 8.25 6.80 5.34 4.85 3.88 

Video Recorder 3.40 1.94 0.87 0.77 0.87 0.97 0.97 1.46 2.43 3.40 3.88 4.85 4.85 5.93 6.13 6.80 6.80 6.80 7.77 8.25 6.80 5.34 4.85 3.88 

DVD 3.40 1.94 0.87 0.77 0.87 0.97 0.97 1.46 2.43 3.40 3.88 4.85 4.85 5.93 6.13 6.80 6.80 6.80 7.77 8.25 6.80 5.34 4.85 3.88 

Radio/Player 3.40 1.94 0.87 0.77 0.87 0.97 0.97 1.46 2.43 3.40 3.88 4.85 4.85 5.93 6.13 6.80 6.80 6.80 7.77 8.25 6.80 5.34 4.85 3.88 

Personal Computer 3.40 1.94 0.87 0.77 0.87 0.97 0.97 1.46 2.43 3.40 3.88 4.85 4.85 5.93 6.13 6.80 6.80 6.80 7.77 8.25 6.80 5.34 4.85 3.88 

Printer 3.40 1.94 0.87 0.77 0.87 0.97 0.97 1.46 2.43 3.40 3.88 4.85 4.85 5.93 6.13 6.80 6.80 6.80 7.77 8.25 6.80 5.34 4.85 3.88 

Lighting 1.03 0.33 0.33 0.83 1.78 2.64 3.56 3.74 3.44 3.04 3.04 3.24 3.94 4.14 4.55 4.96 5.79 6.70 8.21 9.11 9.81 8.50 4.32 2.96 

Other Occasional Loads 2.55 1.33 1.23 1.23 1.33 1.73 2.13 3.55 4.07 3.99 3.77 3.97 4.07 4.47 4.97 6.00 6.32 6.84 7.34 7.56 6.79 6.67 4.84 3.22 

Central Air Conditioning 1.49 1.22 1.02 0.68 0.54 0.50 0.45 1.04 1.22 1.63 2.85 3.73 5.15 7.18 9.19 10.57 11.25 10.98 9.08 6.50 5.15 3.73 2.85 2.03 

Room Air Conditioning 1.49 1.22 1.02 0.68 0.54 0.50 0.45 1.04 1.22 1.63 2.85 3.73 5.15 7.18 9.19 10.57 11.25 10.98 9.08 6.50 5.15 3.73 2.85 2.03 

Water Heating 1.80 1.00 0.90 0.80 1.50 2.30 2.60 4.70 7.70 8.30 7.40 6.10 5.10 4.30 3.90 3.90 5.20 5.80 5.60 5.20 4.70 4.40 4.00 2.80 

Telephone 2.40 1.20 0.70 0.60 0.70 1.30 2.10 2.45 3.35 3.20 3.20 3.84 3.84 4.00 4.80 6.39 7.99 7.99 7.99 9.59 7.99 6.39 4.80 3.20 

Answering Machine 2.40 1.20 0.70 0.60 0.70 1.30 2.10 2.45 3.35 3.20 3.20 3.84 3.84 4.00 4.80 6.39 7.99 7.99 7.99 9.59 7.99 6.39 4.80 3.20 

Electric Space Heater 3.44 2.99 3.01 3.14 3.31 4.12 5.37 5.59 5.54 5.05 4.64 4.43 4.17 3.69 3.57 3.48 3.93 4.73 4.85 4.81 4.64 4.17 3.95 3.39 

Pool Pump 2.64 2.64 2.64 2.64 2.64 2.64 2.64 2.70 3.69 5.51 6.06 6.06 6.06 6.06 6.06 6.06 6.06 6.06 5.51 4.41 3.30 2.64 2.64 2.64 
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Figure A1: Distribution of trip distances with a fitted normal mean of 12.2329 and standard deviation of 2.92 
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