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We present two approximate Minkowski sum algorithms for planar regions bounded
by line and circle segments. Both algorithms form a convolution curve, construct its
arrangement, and use winding numbers to identify sum cells. The first uses the kinetic
convolution and the second uses our monotonic convolution. The asymptotic running
times of the exact algorithms are increased by km log m with m the number of segments
in the convolution and with k the number of segment triples that are in cyclic vertical
order due to approximate segment intersection. The approximate Minkowski sum is close

to the exact sum of perturbation regions that are close to the input regions. We validate
both algorithms on part packing tasks with industrial part shapes. The accuracy is
near the floating point accuracy even after multiple iterated sums. The programs are 2%
slower than direct floating point implementations of the exact algorithms. The monotonic

algorithm is 42% faster than the kinetic algorithm.

Keywords: Minkowski sum; kinetic framework; robust computational geometry.

1. Introduction

We present two approximate Minkowski sum algorithms for planar regions bounded

by line and circle segments. Minkowski sums are an important computational geome-

try concept whose applications include robot path planning, part layout, mechanism

design, and computer graphics. Prior algorithms apply to polygonal regions. The

extension to circle segments is of theoretical and practical interest because line and

circle segments are closed under Minkowski sums, so other algorithms can iterate

these primitives. Moreover, curved shapes are approximated to a given accuracy

with quadratically fewer circle segments than line segments. Applications typically

model curves with 4–6 decimal digits accuracy, so employing circles reduces the

model size by a factor of 100–1000. Although spline models are even more compact,

they are not closed under Minkowski sums.

The standard Minkowski sum algorithm1 forms the kinetic convolution curve

of the input regions, constructs its arrangement, and selects the cells with positive

1
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winding numbers. The kinetic convolution is suboptimal in that the portion in the

Minkowski sum interior is formed, arranged, and then discarded. We have developed

a monotonic convolution2 whose size is nearly optimal. In this paper, we describe

floating point implementations of both algorithms.

The naive approach is to replace real arithmetic with floating point arithmetic.

This approach is fast and accurate for most inputs, but is prone to failure when

rounding errors alter the combinatorial structure of the output.

The mainstream implementation strategy is exact arithmetic using algebraic

geometry (http://cs.nyu.edu/exact). Wein3 presents an exact kinetic algorithm for

polygons. Exact Minkowski sum computation with circle segments has not been

reported. We expect it would be slow, since exact arrangement computation, which

is the dominant cost, is slow. For example, the latest exact algorithm4 takes 220

seconds to arrange 100 degree 6 curves, versus 22 second for our approximate

algorithm5 (both using Linux and GNU C++ on similar processors). The run-

ning time of the exact algorithm is much larger for degenerate input, whereas ours

is unchanged.

A second problem with exact Minkowski sums is that the algebraic degree and

bit complexity of the output are higher than in the input. Output simplification is re-

quired to prevent exponential growth in iterated operations. Iteration is essential to

applications algorithms for packing,6,7 path planning,8 and mechanical design.9 The

state of the art addresses bit complexity growth in 2D polygons,10,11,12,13,14 3D line

segments,15 polyhedral subdivisions,16 and polyhedra defined by plane equations.17

Output simplification is an open problem for circle segments.

These problems motivate our approach of computing approximate Minkowski

sums in floating point. The asymptotic running times of the exact algorithms are

increased by a low-degree polynomial that is negligible in practice. We prove that

the approximate sum is close to the exact sum of perturbation regions that are close

to the input regions. The topology of the approximate sum can differ from that of

the exact sum of the input regions or of the perturbed regions. Output simplification

is automatic, since floating point has constant bit complexity.

We validate the algorithms on part packing tasks with industrial part shapes.

The accuracy is near the floating point accuracy even after multiple iterated sums.

The programs are 2% slower than naive floating point implementations. The mono-

tonic algorithm is 42% faster than the kinetic algorithm. The C++ source code is

available at http://www.cs.miami.edu/˜vjm/robust for teaching or research.

The paper is organized as follows. Section 2 contains definitions. Section 3 de-

scribes our formulation of the kinetic Minkowski sum algorithm and Section 4 an-

alyzes the approximate algorithm. Section 5 describes our monotonic convolution

and Section 6 analyzes the approximate algorithm. Section 7 extends the approxi-

mate monotonic algorithm to compute accurately the free placements of a moving

part with respect to a fixed part. Section 8 presents the validation results. The final

section contains conclusions and plans for future work.
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Fig. 1. Planar regions (a) and their kinetic convolution (b).

2. Definitions

A planar region is a closed, connected region whose boundary consists of simple

loops of line and circle segments. We discuss the core case of a region whose

boundary consists of one loop (Fig. 1a). The extension to multiple loops is

straightforward.2 The endpoints of segment a are designated tail(a) and head(a), so

that the region interior is to the left when a is traversed from tail to head. A circle

segment also has a center, center(a), and a signed radius, radius(a), that is posi-

tive/negative when a is convex/concave, meaning that the center is to the left/right

when the segment is traversed from tail to head.

The rightward (outward) normal vector of a line segment, a, is (y,−x) with

(x, y) = head(a) − tail(a). The rightward normal vector of a circle segment at p is

(p − center(a))/radius(a). The rightward normal angles at tail(a) and head(a) are

called α(a) and β(a). The angle interval of a is [α(a), β(a)] when a is convex and

is [β(a), α(a)] otherwise. The point on a with angle θ is called point(a, θ).

The inputs to the kinetic convolution1 are polygonal tracings. Imagine a

wheelchair driving along the boundary of a polygon. When it reaches a vertex, it

executes a turn to orient itself along the next edge. The turns eliminate boundary

orientation discontinuities. We represent the turn from a to b with a turn segment:

a circle segment, e, with center(e) = tail(e) = head(e) = head(a), radius(e) = 0,

α(e) = β(a), and β(e) = α(b). A polygonal tracing is represented by a smoothed

region in which turn segments are inserted between consecutive boundary segments.

Smoothed regions are abbreviated to regions from here on.

In the monotonic algorithm, we split circle segments at vertical turning points to

obtain x-monotonic segments. A monotonic segment is upper/lower when the region

interior is below/above it. A vertical segment that joins two upper/lower segments

is labeled upper/lower. Otherwise, it is labeled upper/lower when its normal points

right/left. An upper/lower chain is a maximal sequence of upper/lower segments.

The region boundary decomposes into chains that meet at turning points and that

are partially ordered in y: they are ordered in y iff they overlap in x. In Fig. 1a, the

B upper chains are ghijklm and na, and the lower chains are abcdefg and mn.



October 7, 2011 8:2 WSPC/Guidelines paper3

4 Victor Milenkovic and Elisha Sacks

3. Kinetic algorithm

The kinetic convolution, A ⊗k B, of regions A and B is the sum of all pairs of

boundary points with equal rightward normal angles. (The subscript in ⊗k distin-

guishes this convolution from other convolutions, defined later.) The sum consists

of line and circle segments called sum segments. Boundary segments a ∈ A and

b ∈ B generate a sum segment, e = a + b, when their angle intervals overlap. In

Fig. 1b, there is one A segment and selected sum segments are labeled with their

B segments. For line segments a and b with α(a) = α(b), e is the line segment

from tail(a) + tail(b) to head(a) + head(b). For a convex circle segment a and a line

segment b with α(b) ∈ [α(a), β(a)], e is the line segment from point(a, α(b))+tail(b)

to point(a, α(b)) + head(b). When a is concave, the endpoints are interchanged.

For a and b convex/concave circle segments with shared angle interval [α, β], e is

the circle segment from point(a, α) + point(b, α) to point(a, β) + point(b, β) with

radius(e) = radius(a) + radius(b) and center(e) = center(a) + center(b). When one

segment is convex and the other is concave, the endpoints are interchanged.

The Minkowski sum, A ⊕ B, is obtained by constructing the arrangement of

A⊗k B and computing cell winding numbers (called crossing numbers in our mono-

tonic convolution paper2). The winding number of a cell is the oriented sum of the

edge crossings along any path from an interior point to the unbounded cell. An edge

contributes 1 when it is crossed in the direction of its rightward normal and con-

tributes −1 otherwise. Winding numbers are computed by assigning the unbounded

cell 0 and traversing the other cells. When cell b is visited from cell a with winding

number c, its winding number is c − 1 when ab is crossed in the rightward normal

direction and is c+1 otherwise. In Fig. 1b, the large inner cell has winding number 1

and the five small cells have winding number 2. If point u lies in a cell with winding

number K, A ∩ (−B + u) has K connected components. The boundary of A ⊕ B

consists of the segments that separate cells of zero and positive winding number.

Our formulation yields the same sum segments as does the original kinetic

convolution.1 It remains to show that the rightward normal vectors have the cor-

rect orientation. Figure 2 illustrates the four cases that arise for upper circle seg-

ments; a similar analysis applies to lower circle segments and to line segments.

If e = e1 + e2 for convex e1 and e2 (a), moving −R2 down from point u on e

adds a component to R1 ∩ (−R2 + u), so the e normal should point up. Since

h1 < t1 and h2 < t2, head(e) = h1 + h2 < t1 + t2 = tail(e), which implies an

upward normal. If a small convex circle segment meets a large concave circle seg-

ment (b), moving −R2 down adds a component. Since t2x − h2x < t1x − h1x,

head(e) = h1 + t2 < h1 + t2 = tail(e), so the normal is upward. If a large convex

circle segment meets a small concave circle segment (c), two regions merge (arrows)

as −R2 moves down, so the e normal should point down. Since t1x−h1x < t2x−h2x,

tail(e) = t1 + h2 < t2 + h1 = head(e). If two concave circle segments meet (d), two

regions merge (arrows) and tail(e) = h1 + h2 < t1 + t2 = head(e).

The kinetic algorithm assumes generic input. A degeneracy occurs when incident
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Fig. 3. Degenerate input (a) and symbolic perturbation (b).

segments, a and b, meet tangentially at a vertex, v, whose normal angle equals that

of a line segment, c, on the other region boundary (Fig. 3a). The sum v + c is

generated as a + c and as b + c because the a and b angle intervals intersect the c

angle interval. The extra sum invalidates the winding numbers.

We handle degeneracy by symbolic perturbation. Assign the vertices of A integer

labels in counterclockwise order starting from 1. Assign the vertices of B labels

starting one after the last A label. Order vertices with equal angles by label. The

vertex order is realized by perturbing angle α with label l to α+lη with η sufficiently

small. After perturbation, the v angle is strictly ordered with respect to the two c

angles, so the a and b intervals cannot both overlap the c interval. In our example,

the b interval, [90◦, 180◦], contains the c interval, [90◦, 90◦], because 2 < 5, whereas

the a interval, [45◦, 90◦], is disjoint from the c interval because 2 < 5 < 6 (Fig. 3b).

Moreover, perturbed line segments have disjoint angle intervals, so we avoid sums

of line segments, which simplifies the algorithms.

4. Approximate kinetic algorithm

The inputs to the approximate kinetic algorithm are the segment endpoints and the

signed circle segment radii in floating point. In rare cases, the input is modified to

ensure an accurate convolution. The convolution is formed in floating point. The

arrangement is constructed with our approximate algorithm.5 Winding numbers

are defined because the approximate convolution consists of loops of sum segments

and the arrangement algorithm preserves segment incidence. They can be negative,

which is impossible in the exact case. We assign the cells with nonzero winding

number to the Minkowski sum. The extra cells do not increase the error (Sec. 4.3).

The asymptotic running time of the approximate algorithm matches that of the

exact algorithm, plus km log m time to arrange m sum segments with k the number

of segment triples that are in cyclic vertical order. The parameter k quantifies the
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combinatorial error in the arrangement due to numerical error in segment intersec-

tion. The approximate arrangement algorithm is much faster than exact algorithms

in practice, as discussed above.

We bound the error in the boundary segment normal angles and in the sum

segments in terms of the floating point accuracy (Sec. 4.1). The Minkowski sum

error is mainly due to the angles, since a tiny angle error can cause a large change

in the convolution structure by altering the set of sum segments. We address this

sensitivity by defining a perturbed input, called a realization, that is near the actual

input and that has the same angles (Sec. 4.2). We prove that the approximate

convolution and Minkowski sum are accurate (although not exact) for the realization

(Sec. 4.3).

4.1. Sum segments

We employ floating point arithmetic operators, square roots, and trigonometric

functions. The relative error in arithmetic operations is bounded by 2−b with b the

number of bits in the mantissa, which is about 10−16 in double float. The other

operations can be slightly less accurate. We assume a bound of ǫ for all operations.

Suppose f(x) = y, but the computed value is y + e with error e. When g(f(x))

is computed, the error consists of the g rounding error plus the propagated error,

g(y) − g(y + e), due to the error in the g input. The ratio of propagated error to

input error is called the condition number. It is well approximated by yg(y)/g′(y)

by Taylor’s theorem, since the error term is O(e2) and e is tiny. When the condition

number is bounded, the g error is O(ǫ). We say that g is well-conditioned. In a

sequence of operations, the error in each step is propagated to subsequent steps.

When the sequence length is bounded and the operations are well-conditioned, the

final error is O(ǫ).

We compute sum segments via short sequences of operations. Calculus shows

that the operations are well-conditioned when certain bad values are excluded. In

this section, we show that our computations avoid these values. Hence, the compu-

tation error is O(ǫ). This is a relative error that is proportional to the sum segment

length. We remove the lengths from our analysis by scaling the input to the unit

box. Section 8 shows that the actual error is a small multiple of ǫ.

The boundary segment normal angles are computed as follows. For a line seg-

ment, s, with tail t and head h, α(s) = β(s) = γ with γ = arctan(
hy−ty

tx−hx

) (Fig. 4a).

For a circle segment, γ is the normal angle of the secant (Fig. 4b). Compute

δ = arcsin(d/r) with d = ||h − t||/2 and with r = radius(s). The normal angles

are α(s) = γ − δ and β(s) = γ + δ. The only possible bad values are hy − ty and

tx − hx, since subtraction is ill-conditioned when the arguments are nearly equal.

But the arguments to our subtractions are inputs, so there is no error to propagate.

A circle segment point, p = point(s, θ), is computed as follows. We have px =

ox + r cos θ, tx = ox + r cos α, and hx = ox + r cos β with o = center(s) and r =

radius(s). Subtracting the second equation from the first yields px − tx = r(cos θ −
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cos α) and subtracting the second from the third yields hx − tx = r(cos β − cos α).

Eliminating r yields px = tx + dx with dx = (hx − tx)(cos θ− cos α)/(cos β − cos α).

This formula is ill-conditioned when a cosine has a small argument or when two

nearly equal cosines are subtracted. We obtain the well-conditioned formula

dx =
sin θ+α

2
sin θ−α

2

sin γ sin δ
(hx − tx) =

sin θ+α
2

2 sin γ cos δ
2

(hx − tx)

using cos u − cos v = −2 sin u+v
2

sin u−v
2

, θ − α = δ, and sinu = 2 sin u
2

cos u
2
. A

similar derivation yields py = ty − dx cot θ+α
2

, which is well-conditioned.

Every sum segment endpoint has the form p + q where p = point(s, θ) and q is

a boundary segment endpoint. This formula is ill-conditioned when px ≈ −qx or

py ≈ −qy. We compute px = tx + dx + qx by two applications of Dekker’s method18

for computing the roundoff error of a floating-point operation. The computed sum is

the round of the exact sum, hence has no propagated error. We compute py likewise.

Circle segment centers are not computed or used.

Input modification There are two cases where input segments are modified to

ensure Minkowski sum accuracy.

A circle segment, s, is replaced by its secant line segment when δ rounds to zero,

so α(s) = β(s). The distance between the segment and the secant is bounded by ǫ.

We calculate the maximum distance, which occurs at p = point(γ, s), as follows:

(p − t) ·

[

cos γ

sin γ

]

= dx cos γ − dx cot
γ + α

2
sin γ = dx

cos γ sin γ+α
2

− sin γ cos γ+α
2

sin γ+α
2

= dx

− sin δ
2

sin γ+α
2

= (hx − tx)
sin γ+α

2

2 sin γ cos δ
2

− sin δ
2

sin γ+α
2

= (tx − hx)
tan δ

2

2 sin γ

where the third step uses sin(u − v) = sinu cos v − sin v cos u and γ − α = δ. The

maximum distance is 0.25δ(tx − hx)/ sin γ + O(δ2) by Taylor’s theorem. We drop

the second term because δ < ǫ ≈ 10−16. The maximum is bounded by 0.5ǫ because

|tx − hx| ≤ 1 in the unit box and | sin γ| ≥ 0.5.

A line segment, s, is modified when tail(s)x 6= head(s)x and α(s) equals 0◦ or

180◦. The normal is horizontal because |tail(s)x −head(s)x| is of order ǫ. Segment s
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is split into a horizontal from tail(s) to p = (head(s)x, tail(s)y) and a vertical from

p to head(s). The maximum error occurs at p and is bounded by ǫ.

4.2. Realization

We define realization regions A∗ and B∗ for input regions A and B. We discuss A∗

only, since B∗ is defined identically. As explained above, the goal is for A∗ to have

the same normal angles as A at endpoints and at interior circle segment points that

contribute to sum segment endpoints. Moreover, we want the same x coordinates

at these points in preparation for the monotonic algorithm. The realization consists

of four constructive steps that transform A to A∗.

Step 1 transforms the interior circle segment points to endpoints by splitting

each boundary segment, s, at every p = point(s, θ) such that p+q is a sum segment

endpoint. The split segments are realized in steps 2–4. Figure 5 illustrates split-

ting. The four boundary segments of A become seven segments after splitting the

upper/lower segment at the normal angles of the upper/lower triangle sides. The

three interior points with these angles become segment endpoints.

A B A

(a) (b) (c)

Fig. 5. Circle segment splitting: (a) region A; (b) region B; (c) output.

Step 2 realizes the boundary segment chains. Each segment, s, in a chain

is adjusted to make its endpoint coordinates and angles consistent. Let γ =

arctan(
hy−ty

tx−hx

) as above and let φ = (α(s) + β(s))/2. We have γ = φ for any actual

line or circle segment, but the approximate values for s can be unequal. We set

head(s)y to tail(s)y − (head(s)x − tail(s)x) cot φ. Figure 6 illustrates line and circle

segment adjustment. For a vertical segment, adjustment is unnecessary (and unde-

fined) because γ = φ by construction. A chain s1, . . . , sk is realized by adjusting the

si in order and for i > 1 translating si vertically so that tail(si)y = head(si−1)y.

Step 3 vertically shifts the realization chains to eliminate intersections. A chain

cannot self-intersect because its segments are x-monotonic with pairwise disjoint

domain interiors. But two chains can intersect after step 2. Visit the chains in an

order consistent with their partial y order and shift each chain upward until it no

longer intersects any chain below it. Step 4 converts the shifted chains to a loop by

inserting a vertical segment between realization chain endpoints that correspond to

the same input chain endpoint.
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Figure 7 illustrates steps 3 and 4. The region has four chains that are labeled

in increasing y order. Realization chains 2 and 3 intersect near an endpoint, as is

typical. Chains 1 and 4 intersect in their interiors. The region boundary is close to

self-intersection, since the vertical distance between the chains is tiny by Thm. 1.

Theorem 1. The vertical distance between A and A∗ is O(nǫ).

Proof. Here n is the number of A boundary segments. Step 1 introduces no error.

In step 2, the head(si)y adjustment is linear in the segment x extent because cot φ

is well-conditioned. The overall step 2 error is linear in the x extent of the chain

because adjustments are propagated to subsequent segments. In step 3, the vertical

shift in each chain is bounded by the maximum step 2 shift over the chains below,

since the input chains are disjoint. The maximum is bounded by the maximum

chain length times ǫ, which is O(nǫ) because the segments are in the unit box. The

two input modifications add O(ǫ) error per segment.

4.3. Error analysis

We use realizations to prove that our approximate Minkowski sums are accurate.

The approximate sum of regions A and B is written as A⊕̂B; likewise A⊗̂kB is

the approximate kinetic convolution and ê = a+̂b is an approximate sum segment.

When we compute the arrangement of A⊗̂kB with our approximate algorithm,5

the output is correct for a perturbation of the input, A⊗̃kB, that preserves segment

incidences. The perturbation size is O(ǫ+kmǫ) for m sum segments with k inconsis-

tencies; in practice it is O(ǫ). Let µ bound the sum of the perturbation magnitude
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and the realization error of A∗ and B∗. We prove that A⊕̂B is µ-close to A∗ ⊕ B∗

in the Hausdorff metric.

Lemma 1. A∗ ⊗k B∗ is O(nǫ) close to A⊗̂kB.

Proof. Define a map, ψA, from the boundary of A∗ onto the boundary of A: map

point(a∗, θ) to point(a, θ) for a circle segment, map a line segment linearly, and

contract a step 4 vertical to the common map of its endpoints. Define ψB likewise.

Map s∗ = a∗ + b∗ to ψA(a∗) + ψB(b∗). The map is a surjection from A∗ ⊗k B∗ onto

A⊗̂kB and the distance from a point to its image is O(nǫ) by Thm. 1.

Theorem 2. A⊕̂B is µ-close to A∗ ⊕ B∗.

Proof. If t ∈ A∗⊕B∗ and t 6∈ A⊕̂B, the winding number of t is positive in A∗⊗kB∗

and is zero in the approximate arrangement of A⊗̂kB, hence is zero in the perturbed

convolution A⊗̃kB. Thus, t lies on opposite sides of e∗ and ẽ for some sum segment

e. Since e∗ and ẽ are µ-close by Lemma 1, t is within µ of ẽ. The A⊗̃kB region on

the other side of ẽ has winding number ±1, hence is in A⊕̂B. Thus, t is within µ

of A⊕̂B.

If t ∈ A⊕̂B and t 6∈ A∗ ⊕B∗, the winding number of t is nonzero in A⊗̂kB and

is zero in A∗ ⊗ B∗, so t is within µ of A∗ ⊗k B∗ as above. Since every point in the

convolution is a limit point of the Minkowski sum, t is within µ of A∗ ⊕ B∗.

5. Monotonic convolution

A large portion of the kinetic convolution can lie in the Minkowski sum interior.

Figure. 8 shows an example involving a convex polygon, A, and an unbounded

polygonal region, B, whose boundary is a convex polygon. The Minkowski sum (b)

is an unbounded polygonal region whose boundary is a convex polygon. Most of the

kinetic convolution (c) lies in the interior of this region. A smaller convex convolution

(d) is obtained by excluding convexly incompatible segments.19 Boundary segments

a ∈ A and b ∈ B are convexly incompatible when the sum of their curvatures is

negative. The curvature of s is 0 for a line segment and is 1/radius(s) otherwise. If

points p ∈ a and q ∈ b have equal normals, A and −B+p+q have a point of tangency

and intersect in the neighborhood of this point, so p + q is in the Minkowski sum

interior (Fig. 9). The convex convolution, A⊗c B, is the set of convexly compatible

sums. It is a superset of the A ⊕ B boundary.

The kinetic convolution has two advantages over the convex convolution for

Minkowski sums. The convex convolution does not define winding numbers, so each

arrangement cell must be classified by selecting a point t and testing whether A

intersects −B + t. This takes O(n log n) time with n the input size, versus constant

time with the kinetic convolution. The convex convolution topology is sensitive to

changes in the sum segment endpoints and crossings, so an approximate algorithm
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A

B

(a) (b)

T segments
(c) (d) (e)

Fig. 8. Convolution comparison: (a) parts (actual size): (b) Minkowski sum (×25); (c) kinetic
convolution (×10); (d) convex convolution (×10); (e) monotonic convolution (×10).

compatible incompatible

Fig. 9. Curvature test.

is prone to unbounded error. We have shown in Sec. 4.3 that the kinetic convolution

does not have this problem.

Our monotonic convolution2 combines the advantages of the kinetic and convex

convolutions. It defines winding numbers that determine Minkowski sum member-

ship. Yet it is only slightly larger than the convex convolution in the worst case

and is often much smaller (Fig. 8e). We briefly describe the monotonic convolution

(leaving the proofs to our prior paper), present an approximate version, and prove

a stronger error bound than that of the approximate kinetic algorithm (Sec. 7).
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5.1. Definition

The Π shape of an upper/lower chain is the region below/above it, which is bounded

by the chain and by the downward/upward vertical rays at its endpoints. In Fig. 10a,

B has upper Π(ghijklm) with downward rays at g and m, upper Π(na), lower

Π(abcdefg) with upward rays at a and g, and lower Π(mn). For upper chains U

and V , the Minkowski sum Π(U) ⊕ Π(V ) is an upper Π shape whose boundary is

the upper envelope of Π(U)⊗c Π(V ). The U, V crust is the upper envelope oriented

right to left. For lower chains L and M , Π(L) ⊕ Π(M) is a lower Π shape whose

crust is the lower envelope of Π(L) ⊗c Π(M) oriented left to right.

B

j h

g

i

d f

a

b

k

n

l

m

c e

p

q
A

p+n

q+n

p+mn

q+na
0

2

1

(a) (b) (c) (d)

Fig. 10. (a) Planar regions; (b) crust segments; (c) T segments; (d) monotonic convolution.

The monotonic convolution, A ⊗m B, is the multi-set union of the A,B crusts

and T segments. The T segments are the boundaries of the regions p1 + B and

A + p2 for every concave turning point p1 ∈ A and p2 ∈ B. A turning point is

concave when its lower chain is above its upper chain, like n in Fig. 10a. In the

multi-set union, a crust segment cancels a T segment when they lie on the same

line or circle and are related. Related means that the crust segment is generated

by chains C and D, and the T segment is generated by C and a concave endpoint

of D. The identical portions of the two segments are deleted. Figure 10 illustrates

these concepts. The union of the crust segments q + n and p + n with the T circle

segment is the concave side of the region with winding number 2.

5.2. Monotonic algorithm

The monotonic convolution is computed as follows. Split the region boundaries

into chains. Smooth an upper/lower chain to 0/180 at its tail and to 180/0 at its

head. Compute the crusts. Form the sum segments for the convexly compatible

pairs using the Sec. 3 definitions. Compute envelopes for the non-vertical segments.

Insert vertical segments in the envelopes to close vertical gaps and to connect the

left/right boundary points to the sum of the left/right chain endpoints. Compute

the T segments from the definition. Form the multiset union. Arrange the resulting
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monotonic convolution and assign winding numbers, as in the kinetic algorithm.

6. Approximate monotonic algorithm

The approximate monotonic algorithm is a floating point implementation of the

exact algorithm with one modification. Two upper/lower segments are deemed con-

vexly compatible when the head of their sum segment is to the left/right of the tail.

The endpoint rule is equivalent to the curvature rule in exact arithmetic. Equiva-

lence follows directly from the sum segment definitions in Sec. 3. In floating point,

the endpoint rule prevents gaps in the convolution that can cause unbounded errors

in the Minkowski sum.

As in the kinetic case, the asymptotic running time of the approximate algorithm

matches that of the exact algorithm plus km log m time to arrange m sum segments

with k the number of segment triples that are in cyclic vertical order.2 The alternate

convex compatibility test takes constant time. The envelopes are computed by the

standard divide and conquer algorithm: split the input in half, compute envelopes

recursively, and merge. We implement the merge with our approximate sweep algo-

rithm. The running time is linear in the input size because the sweep contains at

most two segments at all times.

6.1. Error analysis

We prove that the vertical error in the crusts is O(nǫ) for n boundary segments.

The T segment vertical error is trivially O(ǫ). The Sec. 4.3 error bounds transfer

to the monotonic algorithm with Thm. 3 replacing Thm. 1 and with the monotonic

convolution replacing the kinetic convolution.

We treat upper chains U and V ; lower chains are analogous. The U, V crust,

C, is the approximate upper envelope of the approximate convex convolution

Π(U)⊗̂cΠ(V ). Call a segment forward/backward when its head is left/right of its

tail. The sum segment s = a + b is included in the envelope when it is forward.

Step 1 of the realization (Sec. 4.2) generates segments a∗

i and b∗i from the portions

of a and b in the shared angle interval, [α, β], as shown in Fig. 11. These segments

generate a chain, d∗, of sum segments, c∗i = a∗

i + b∗i , and the convexly compatible

c∗i form C∗ = Π(U∗) ⊗c Π(V ∗). These are also the forward c∗i , since the endpoint

rule and the convexity rule are equivalent in exact arithmetic. Even when s is back-

ward, hence is not in Π(U)⊗̂cΠ(V ), d∗ can contain forward segments, such as c∗2
in Fig. 11c, which are in Π(U∗) ⊗c Π(V ∗). Despite these missing segments, the

approximate upper envelope is close to the exact one.

Theorem 3. The vertical distance between C and C∗ is O(nǫ).

Proof. The first step is to show that C is at most O(nǫ) above C∗. C is never

above the approximate upper envelope of Π(U)⊗̂kΠ(V ) because Π(U)⊗̂cΠ(V ) is a

subset of Π(U)⊗̂kΠ(V ). The vertical distance between the approximate envelope of
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Fig. 11. Upper segments (a-b) and prototypical sum segment chain (c).

Π(U)⊗̂kΠ(V ) and the envelope of Π(U∗)⊗k Π(V ∗) is O(nǫ) by Lemma 1, since the

error in envelope computation is O(ǫ). The envelope of Π(U∗)⊗k Π(V ∗) equals the

envelope of Π(U∗) ⊗c Π(V ∗), which is C∗. Since C is never above a curve that is

O(nǫ) close to C∗, it is at most O(nǫ) above C∗.

The second step is to show that C is at most O(nǫ) below C∗. Suppose c∗i
is forward and is defined at x = u. If s is forward, u is in the exact endpoint x

interval of s by definition. Since the computed endpoint x coordinates equal the

rounded exact values (Sec. 4.1), u is in the computed endpoint x interval. The

vertical distance between it and c∗i is O(nǫ) by Lemma 1. For s backward, we show

that another forward segment of Π(U)⊗̂cΠ(V ) is close to c∗i at x = u.

Consider a downward vertical ray at x = u. If u is inside the d∗ endpoint x

interval, the ray intersects one more backward than forward d∗ segment (2 versus 1

at u1 in our example) because d∗ is backward. The net contribution to the winding

number of Π(U∗) ⊗k Π(V ∗) is −1 because backward/forward segments contribute

−1/1. If u is outside the endpoint x interval, the ray intersects the same number

of forward and backward d∗ segments (2 at u2 in our example) because both d∗

endpoints are on the same side of the ray. The net contribution is zero to the

winding number of the cell just below the lowest d∗ crossing. In both cases, the

winding number is positive below the first crossing: Π(U∗) ⊕ Π(V ∗) is a Π shape,

so every point below the upper envelope is inside. This means that the ray crosses

a forward chain no later than it crosses the lowest d∗ segment.

The forward chain has the form e∗ + f∗ with g = e + f a forward sum segment.

As above, u is in the endpoint x interval of g. By Lemma 1, g is at most O(nǫ)

below the lowest d∗ segment at x = u. The y values of d∗ at x = u are O(nǫ) close

to each other by Lemma 1 because all the segments realize portions of s. Hence, g

is at most O(nǫ) below d∗.

7. Falsely free points

The main application of Minkowski sums is for computing free (disjoint) part place-

ments: if t is in the complement of A ⊕ B, called the free space, A and −B + t are

free. A natural error bound on the approximate free space is that a µ-perturbation



October 7, 2011 8:2 WSPC/Guidelines paper3

Two approximate Minkowski sum algorithms 15

Ar

−B+t

s

1
2 2

correct
r+s too high

r+s

bubble

(a) (b) (c)

Fig. 12. Bubble: (a) part overlap; (b) non-free exact cell; (c) falsely free approximate cell.
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Fig. 13. Regions with (a) and without (b–c) 2µ separation.

of A and −B + t makes them free. Here µ is the Minkowski sum accuracy defined

in Sec. 4.3. The error bounds of Thm. 2 permit the approximate Minkowski sum

to omit regions of diameter µ that are an unbounded distance from its boundary.

Points in these regions, called falsely free points, violate the natural error bound.

A cell comprised of falsely free points is called a bubble; the falsely free portion of

a non-bubble is called a crack.

Figure 12 shows a bubble. Parts A and −B + t have a large overlap, so a µ-

perturbation cannot separate them. In the exact Minkowski sum, t is in a small

cell of winding number 3 surrounded by cells of winding number 1 and 2. In the

approximate sum, the circle segment r + s is above the line segment intersection, so

the t cell is assigned winding number 0 and is falsely free. Figure 19 shows a crack.

Falsely free points can be eliminated by removing the free space regions that

are smaller than a threshold, as described in Sec. 8. There is no practical import

because applications work at a much coarser resolution. Nevertheless, the approach

is inelegant, empirical, and inaccurate. We prevent falsely free points in the ap-

proximate monotonic convolution without increasing the asymptotic running time.

The method applies to regions whose non-incident boundary chains are 2µ sepa-

rated (Fig. 13). We see no efficient way to prevent falsely free points in unseparated

regions. But neither do these regions appear useful in applications.

A second application of Minkowski sums is for computing free placements of

multiple parts, as described in Sec. 8. Let Uij = Pi⊕̂ − Pj denote the free space of

part Pj with respect to part Pi. The core operation is forming the Minkowski sum

Uij⊕̂Ujk. Falsely free points here lead to falsely blocked regions of diameter µ that

are omitted from the computed set of free placements, which is a negligible error.
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Hence, falsely free points require no special treatment. Large errors would occur

for points in the approximate sum that were far outside the exact sum, but these

would violate the error bounds.

7.1. Algorithm

The sweep algorithm that forms the monotonic convolution arrangement imposes

a partial y order on its edges. The input structure imposes a partial y order on the

convolution segments at each x value. There are no falsely free points when the two

orders agree: a is below b at x in the convolution order implies that the a edge at

x is below the b edge at x in the sweep order. We modify the sweep algorithm to

place the edges in convolution order.

The boundary chains of a region are partially ordered in y. The chain orders of

two regions induce a partial order on their monotonic convolution that is the tran-

sitive closure of the following rules. For boundary chains or convolution segments,

V ≤ W means that V is below W at every x in the intersection of their domains.

(1) If V and W are chains and V ≤ W , then V + p ≤ W + p.

(2) If L1 and L2 are lower chains and p is above L2, then L1 + L2 ≤ L1 + p.

(3) If U1 and U2 are upper chains and p is below U2, then U1 + p ≤ U1 + U2.

(4) If L1 ≤ U1 and L2 ≤ U2, then L1 + L2 ≤ U1 + U2.

Rule 1 follows from the invariance of y order under translation. For rule 2, L1 + L2

is the lower envelope of Π(L1)⊗k Π(L2), which is a superset of L1+p. Rule 3 follows

likewise. For rule 4, pick p above L2 and below U2, so L1 + L2 ≤ L1 + p2 by rule 2,

L1 + p2 ≤ U1 + p2 by rule 1, and U1 + p2 ≤ U1 + U2 by rule 3.

The sweep enforces rule 1 when V and W are not incident. The exact V + p

and W + p are 2µ separated because they are p translations of V and W , which

are 2µ separated by the separation assumption. The approximate segments are µ

separated because they are µ close to the exact segments. The V + p edges are

placed below the W + p edges because the arrangement algorithm is µ accurate.

The sweep enforces rule 4 when L1 and U1 are not incident. Pick p above L2

and below U2. The exact L1 + p and U1 + p are 2µ separated because they are p

translations of L1 and U1. The exact L1 +L2 and U1 +U2 are 2µ separated because

L1 + L2 ≤ L1 + p by rule 2 and U1 + p ≤ U1 + U2 by rule 3. The approximate

segments are µ separated because they are µ close to the exact segments.

Every other instance of the four rules involves segments from chains Li and Ui

that meet at pi for i = 1, 2. There are three cases. When p1 and p2 are convex

(L1 ≤ U1 and L2 ≤ U2), the segments are {L1 + L2, U1 + U2} and their order is

L1 + L2 ≤ U1 + U2 by rule 4. When p1 is convex and p2 is concave, the segments

are {L1 + L2, L1 + p2, U1 + p2, U1 + U2} and their order is L1 + L2 ≤ L1 + p2 by

rule 2, L1 + p2 ≤ U1 + p2 by rule 1, and U1 + p2 ≤ U1 + U2 by rule 3. When p1 and

p2 are concave, there are six segments whose order is p1 + U2 ≤ p1 + L2 by rule 1,

L1 +L2 ≤ p1 +L2 by rule 2, p1 +U2 ≤ U1 +U2 by rule 3, and three symmetric rules
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with indices 1 and 2 switched. When two segments cancel, an inequality becomes an

equality that generates a new inequality. At every x where p1 +U2 cancels U1 +U2,

U1 + p2 ≤ p1 + L2, since U1 + p2 ≤ U1 + U2 by rule 3, U1 + U2 equals p1 + U2 at x,

and p1 + U2 ≤ p1 + L2 by rule 2. The other three cancellations are analogous.

We make two changes to the sweep algorithm that enforce the convolution order

of edges from segments with shared endpoints. A swap event is canceled when the

two segments are in convolution order at the swap x. A segment, e, is inserted in

the sweep list, S, in convolution order. The chains in S that are related to e by

the four rules are in convolution order by inductive hypothesis. Let a and b be the

predecessor and successor of e among these chains in convolution order. Use the

lowest or highest element of S when a or b is undefined. Segment e is inserted in the

subtree of S bounded by a and b. The extra cost of insertion is constant because e

is related to at most five segments.

7.2. Correctness

Let t lie in a free cell of the approximate arrangement of A ⊗m B. We prove the

existence of regions A′ and B′, µ close to A and B, for which A′ and −B′ + t are

free (Thm. 4).

The first step is to define a partial order on the boundary chains of A and −B+t.

The A chains and the B chains are partially ordered. The −B + t chains have the

reverse order of the B chains. We say that a chain is below t when its edge at tx
is below t in the sweep order. The crusts below t couple the A and −B + t orders.

When t is above upper crust U1 + U2, upper chain U1 of A precedes lower chain

−U2+t of −B+t. When t is above lower crust L1+l2, upper chain −L2+t precedes

lower chain L1. The chain relation is acyclic, hence defines a partial order.

Lemma 2. The chain relation is acyclic.

Proof. Suppose an increasing cycle exists. The cycle contains chains from both A

and −B + t because the individual orders are acyclic. Starting from an A chain,

U1, follow the cycle until the first −B + t chain, −U2 + t, which must be an upper

chain. Then follow the chain to the next A chain, L1, which must be a lower chain.

If U1 ≤ L1, shorten the cycle by erasing the chains −U2 +t through −L2 +t. Repeat

this process until L1 ≤ U1. Since −U2 + t comes before −L2 + t in the sequence of

−B + t chains, −U2 + t ≤ −L2 + t and L2 ≤ U2. By rule 4, L1 + L2 ≤ U1 + U2.

But U1 ≤ −U2 + t and −L2 + t ≤ L1 imply that t is above U1 + U2 and is below

L1 + L2, which contradicts L1 + L2 ≤ U1 + U2.

The second step is a technical lemma. Let functions fi(x) be defined on [li, ri]

for i = 1, 2. The translation of fi by p is the function fp
i (x) = fi(x − px) + py on

[li + px, ri + px]. Let there exist points pi = (xi, fi(xi)) on fi such that p = p2 − p1

satisfies fp
1 ≤ f2 (Fig. 14).

Lemma 3. There exist functions f ′

i on [li, ri], ||p|| close to fi, such that f ′

1 ≤ f ′

2.
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Fig. 14. Technical lemma: (a) fi; (b) f
p
1
; (c) f ′

i .

Proof. Suppose x1 ≤ x2; the other case is similar. Define

f ′

1(x) = f1(x) and f ′

2(x) = f−p
2 (x) for x < x1

f ′

1(x) = l(x) and f ′

2(x) = l(x) for x1 ≤ x ≤ x2

f ′

1(x) = fp
1 (x) and f ′

2(x) = f2(x) for x > x2

with l(x) the line from p1 to p2. If x1 = x2, the middle line segment is vertical. The

inequality holds trivially in the second case and holds by assumption in the third

case. It holds in the first case because this is a −p translation of the third case. The

distance from a curve to its p translation is ||p||, as is the length of l.

The third step employs our prior results.2 Let O be the number of pairs of an

upper chain of A and a lower chain of B that overlap in x. An upper and lower

chain that overlap in x with the upper below the lower are called facing. Let F be

the number of facing pairs of A/B and B/A chains. Let T be the number of concave

turning points of one region interior to the other region. The monotonic intersection

number of A and B is defined as M = O−F − T . It is zero when A and B are free

and is positive otherwise. The winding number of the A ⊗m B cell that contains

the point t equals the monotone intersection number of A and −B + t; the winding

number with respect to the crusts equals O − F .

Lemma 4. A t where O − F = 0 is not falsely free.

Proof. If t is above the approximate upper crust U1 + U2 and below the exact

crust, it is µ close to the exact crust, since the arrangement is µ accurate. The

translation that maps t to the nearest point on the exact crust translates −U2 + t

to face U1 and be in contact. Let p1 and p2 be the points of contact on U1 and

on −U2 + t before translation. By Lemma 3, there exist µ perturbations such that

U ′

1 ≤ −U ′

2 + t, which implies that t is above U ′

1 + U ′

2. Likewise for lower crusts.

We have defined µ perturbations that realize the inter-region inequalities in the

chain order. The intra-region inequalities are correct. Since the chain order is the

transitive closure of these inequalities, any U ≤ V follows from an increasing path

from U to V that contains at most one inter-region inequality. The perturbation
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Fig. 15. Extended chain order: (a) U1 ≤ L′

1
; (b) U1 ≤ −U ′

2
+ t.

that realizes this inequality realizes the intra-region inequalities by 2µ separation,

hence realizes U ≤ V . We conclude that there exists a µ perturbation, A′ and B′,

that realizes the chain order by Lemmas 9 and 10 in our prior paper.5

Using the downward vertical ray from t, O−F equals the number of lower crusts

below t minus the number of upper crusts below t. This number is zero in A′⊗m B′

because it is zero in the approximate arrangement and A′ and B′ realize the chain

order. The winding number of t in A′ ⊗m B′, O − F − T = −T , is zero because

winding numbers and T values are non-negative.

The final step is to prove the general result. We extend the chain order to the

concave vertices of each region that are inside the other. Let −p2 + t be a concave

vertex of −B + t with lower chain −U2 + t and upper chain −L2 + t. If −p2 + t is

inside A, it is above a lower chain, L1, of A and is below an upper chain, U1, of A

(Fig. 15). In the approximate arrangement, t is above the T segment L1 + p2 and

is below U1 + p2. We add L1 ≤ −L2 + t and −U2 + t ≤ U1 to the chain order at

x = −p2x + tx. Likewise for a concave vertex of A that is inside −B + t.

Lemma 5. The extended chain relation is acyclic.

Proof. A cycle must include one of the new orders, since the base relation is acyclic.

Consider −U2 + t ≤ U1; the other cases are similar. The new order occurs when t is

below U1+p2. Since U1+p2 ≤ U1+U2 by rule 3, t is below U1+U2, so U1 ≤ −U2+t

is not in the chain order. Thus, the chain after U1 in the cycle is not −U2 + t.

If a lower chain, L′

1, of A is next (Fig. 15a), the cycle reaches an upper chain,

U ′

1, of A before returning to −U2 + t. Since upper chains cannot be incident, U ′

1 is

2µ distant from U1. Neither U ′

1 nor its successors in the cycle can be below −U2 + t

by µ accuracy. An upper chain of A cannot follow U1 because some lower chain of

A intervenes. The last case is a chain, −U ′

2 + t, of −B + t (Fig. 15b), which is 2µ

distant from −U2 + t and cannot be followed by −U2 + t as before. Hence a cycle

is impossible.
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Fig. 16. Test part shapes.

(1) (2) (3) (4) (5)

Fig. 17. Packing two copies into the minimum scale copy of a third.

Theorem 4. The monotonic convolution has no falsely free points.

Proof. Let the winding number of t be zero in the approximate arrangement. The

extended chain order at x is acyclic by Lemma 5. Hence, it can be realized by

the method of our prior paper. (The realization error is unbounded, but that is

irrelevant.) Define regions A+ and B+ that realize the extended order. The winding

number of t in A+ ⊗m B+ is zero because the exact and approximate O − F are

equal and the exact T is no smaller than the approximate one, since the T segments

are realized. Hence A+ and −B+ + t are free, so neither can have a vertex inside

the other, so the exact T = 0, so O − F = 0 and Lemma 2 applies.

8. Validation

We validated the Minkowski sum algorithms by using them to implement Av-

naim and Boissonnat’s algorithms6 for translating two parts into an arbitrary

container and three parts into a rectangular container. We tested five industrial

part shapes (Fig. 16). The number of boundary segments without turn segments

is s = 32, 10, 24, 22, 96. First, we packed two instances of each part into a third

instance (Fig. 17). We determined the minimum scale of the third part by binary

search on the scale down to the accuracy of double precision arithmetic. Second,

we determined the smallest square that contains the three parts by binary search

on the size of the square (Fig. 18).
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Fig. 18. Packing three copies into the minimum square.

8.1. Packing algorithms

The algorithm for two-part packing of P1, P2 into container C is as follows. Let P0 =

C be the complement of the container. For 0 ≤ i, j ≤ 2, calculate Uij = Pi ⊕−Pj .

Calculate U ′

01 = U01∩(U02⊕−U12). If U ′

01 is empty, there is no solution. Otherwise,

pick t1 ∈ U ′

01. Calculate U ′

02 = U02 ∩ (U12 + t1). Pick t2 ∈ U ′

02. P1 + t1 and P2 + t2
lie inside C without overlap.

The algorithm for three-part packing of P1, P2, P3 into a rectangle R = P 0 is

as follows. For 0 ≤ i, j ≤ 3, calculate Uij = Pi ⊕−Pj . For 1 ≤ i, j ≤ 3, calculate

U ′

ij = Uij ∩(−U0i⊕U0j). Calculate U ′′

13 = U ′

13∩(U ′

12⊕U ′

23). If U ′′

13 is empty, there is

no solution. Otherwise, pick t13 ∈ U ′′

13. Calculate U ′

01 = U01 ∩ (U03 − t13) and U ′′

12 =

U ′

12∩ (−U ′

23 + t13)∩ (−U ′

01⊕U02). Pick t12 ∈ U ′′

12. Calculate U ′′

01 = U ′

01∩ (U02− t12).

Pick t1 ∈ U ′′

01. Set t2 = t1 + t12 and t3 = t1 + t13.

8.2. Implementation

We pick t in region U using the trapezoidal decomposition generated by the ar-

rangement algorithm. The width of a trapezoid is its x extent. Define its height as

the y extent at the midpoint of the x extent. Define its size as the minimum of its

width and height. We choose the maximum size trapezoid and set t to the midpoint

of the vertical at the x midpoint.

In the kinetic algorithm, cracks and bubbles are eliminated heuristically. Each

vertex that is within a threshold of the edge immediately above or below is connected

to it by a vertical line segment. These segments convert cracks into bubbles (Fig. 19).

After insertion, a free cell is rejected when its maximum trapezoid size is less than

the threshold. We set the threshold to 10−13 units based on a preliminary run of

the algorithm. We selected a t in each region, as described above, and computed

the maximum trapezoid size for which A overlaps −B + t.

Region U ′

02 in the first algorithm may be empty even though U ′

01 is not. Similarly,

U ′′

12 or U ′′

01 may be empty in the second algorithm. These situations are artifacts of

approximate computation. When they occur, we abort the binary search and return

the smallest container size seen so far.
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crack bubble

Fig. 19. Crack is converted to bubble by vertical segments.

8.3. Results

Table 1 shows the time and error for the the kinetic and monotonic algorithms.

There are nine test cases. The first three are variants of part 1 (Fig. 16) with 8, 16,

and 32 teeth. The next three are variants of part 2 with 10, 20, and 40 arcs. The

final three are parts 3–5.

The total time, T , is 2%–70% less for the monotonic algorithm with a 42% aver-

age reduction. The convolution computation time, Tc, is greater for the monotonic

convolution than for the kinetic convolution, but the arrangement time, Ta, is much

smaller. The time, Ts, for completing the Minkowski sum is larger for the kinetic

algorithm because of the crack and bubble heuristics. The time To, which should

be identical, is comparable. The error tests were conducted in a separate run of the

validation, so they do not affect the running times.

The robustness time, Tf , is the cost of our algorithms over direct floating point

implementations of the exact algorithms. The main costs are Dekker’s method for

sum segment endpoint computation and falsely free point elimination. The aver-

age/maximum cost is 2%/11% of the total running time. Although the monotonic

cost is smaller than the kinetic cost, it is a larger percentage of the running time,

since the algorithm is much faster.

Theorem 4 implies that a µ-erosion makes A and −B + t free at every t in the

free space computed by the monotonic algorithm. We estimate µ as the maximum

size overlap region as t ranges over all vertices and midpoints of edges of A⊕B. The

size of an overlap region is defined as the size of its largest trapezoid. For the kinetic

algorithm, a second error metric is the maximum size region that is smaller than

the threshold, yet contains a a truly free t. The estimated µ is the maximum of the

two errors. In two instances, two-part packing for parts 3 and 4, this second error

metric makes the kinetic algorithm significantly less accurate than the monotonic

algorithm. In all cases, the accuracy, α = − log2 µ, is 43–50 bits. This accuracy far

exceeds manufacturing accuracy, which is at most 24 bits. Each algorithm aborted

in five cases due to an incorrectly empty U ′ or U ′′ set, but always after at least

50 iterations of the binary search. Hence, the packing algorithm was at least as

accurate as the underlying Minkowski sum algorithm.

The quantity nc is the total number of cells in all the arrangements of all the

convolutions involved in the packing algorithm. This number is averaged over the
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Table 1. Packing results: k2 and m2 are for two-part packing with the kinetic and monotonic algo-
rithms; k3 and m3 are for three-part packing; T average solution time in milliseconds; breakdown
into time Tc for convolution, Ta for arrangement of convolution, Ts for rest of Minkowski sum,

To for other than Minkowski sum, and Tf for robustness; accuracy α in bits; average nc cells in
thousands and nb bubbles per problem.

part 1a part 1b part 1c

k2 m2 k3 m3 k2 m2 k3 m3 k2 m2 k3 m3

T 67 40 131 129 662 341 616 479 9185 5037 5686 3726

Tc 3 14 7 23 26 87 26 95 290 867 162 468

Ta 55 18 51 37 609 229 425 210 8634 4008 4681 2431

Ts 3 2 21 18 9 9 47 52 210 113 215 202

To 6 5 53 52 17 16 118 121 50 49 628 625

Tf 1 2 0 2 10 6 6 9 164 74 116 53

α 48 48 48 48 47 47 47 47 48 48 46 47

nc 1.5 0.2 1.3 0.4 15.7 3 17.2 3.1 177 55.1 193.3 45.4

nb 21 0 4 0 12 0 42 0 46 0 110 0

part 2a part 2b part 2c

k2 m2 k3 m3 k2 m2 k3 m3 k2 m2 k3 m3

T 67 39 98 78 140 53 163 112 315 93 219 102

Tc 3 10 5 12 7 19 7 21 13 40 14 33

Ta 56 21 59 28 115 20 84 24 269 23 141 19

Ts 2 2 10 10 6 4 21 20 9 10 18 15

To 6 6 24 27 13 10 50 47 24 20 45 36

Tf 1 0 1 1 2 1 2 2 4 2 2 1

α 44 44 46 46 43 43 45 45 44 44 48 48

nc 1.7 0.3 2.1 0.4 3.5 0.3 3.1 0.3 6.8 0.3 4.6 0.1

nb 173 0 286 0 525 0 556 0 956 0 776 0

part 3 part 4 part 5

k2 m2 k3 m3 k2 m2 k3 m3 k2 m2 k3 m3

T 82 54 126 93 32 25 42 35 2024 872 2059 1299

Tc 4 11 9 23 2 6 1 5 84 255 94 273

Ta 66 32 89 39 26 16 25 15 1873 569 1554 610

Ts 5 5 8 9 1 2 5 5 35 18 116 124

To 8 6 20 21 3 1 11 10 32 28 295 293

Tf 1 1 1 1 0 1 0 1 32 18 31 21

α 43 50 48 48 43 51 50 50 46 45 46 45

nc 2.3 0.6 4.2 0.6 0.7 0.3 0.6 0.2 33.4 3.9 49.4 4.9

nb 42 0 86 0 11 0 6 0 744 0 1215 0

iterations of the binary search. This quantity is larger for the kinetic algorithm,

thus accounting for the larger time Ta to construct the arrangement.

We limited the validation to shapes with 2µ separation. Manufacturing processes
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cannot generate unseparated shapes because process accuracy is much lower than

µ. One could model unseparated shapes via set operations on separated shapes.

The Minkowski sum algorithm would be applied to the separated shapes and the

final sum would be obtained via set operations. Alternately, one could sum an

unseparated shape with a small disk to obtain a separated shape.

9. Conclusion

Our prior work2 shows that the monotonic convolution is less complex than the

kinetic convolution in theory and in practice. This paper demonstrates that the

reduced complexity translates into lower running time and higher accuracy. We

present approximate convolution algorithms that permit iterated application of set

operations and of Minkowski sums with high accuracy. The monotonic algorithm

avoids falsely free points by enforcing consistency rules, whereas the kinetic algo-

rithm uses a threshold based on an a priori accuracy estimate. The approximate

Minkowski sum algorithms easily handle Avnaim and Boissonnat’s algorithms for

two and three part containment applied to profiles with circle segments. An exact

algorithm appears impractical because the output algebraic degree is 16 for two

parts and is 256 for three parts, and the bit complexity grows analogously.

The next step is to handle planar regions that rotate and translate. The kinetic

algorithm generalizes to this case, but not the monotonic algorithm. The gener-

alization, called a configuration space partition, is useful for robot path planning,

part layout, mechanical design, and more. We are working on an algorithm that

constructs the approximate configuration space and that employs it for these tasks.

Acknowledgments

Research supported by NSF grants IIS-0082339, CCF-0306214, and CCF-0304955.

References

1. L. Guibas, L. Ramshaw, and J. Stolfi. A Kinetic Framework for Computational Ge-
ometry. In Proceedings of the 24th IEEE Symposium on Foundations of Computer
Science, pages 100–111, 1983.

2. Victor Milenkovic and Elisha Sacks. A monotonic convolution for Minkowski sums.
International Journal of Computational Geometry and Applications, 17(4):383–396,
2007.

3. Ron Wein. Exact and efficient construction of planar Minkowski sums using the convo-
lution method. In Proceedings of the 14th Annual European Symposium on Algorithms,
pages 829–840, 2006.

4. Arno Eigenwillig and Michael Kerber. Exact and efficient 2d-arrangements of arbitrary
algebraic curves. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA08), pages 122–131, 2008.

5. Victor Milenkovic and Elisha Sacks. An approximate arrangement algorithm for semi-
algebraic curves. International Journal of Computational Geometry and Applications,
17(2), 2007.



October 7, 2011 8:2 WSPC/Guidelines paper3

Two approximate Minkowski sum algorithms 25

6. Francis Avnaim and Jean-Daniel Boissonnat. Simultaneous containment of several
polygons. In Symposium on Computational Geometry, pages 242–247, 1987.

7. Victor Milenkovic and Karen Daniels. Translational polygon containment and mini-
mal enclosure using mathematical programming. International Transactions in Oper-
ational Research, 6:525–554, 1999.

8. Elisha Sacks. Path planning for planar articulated robots using configuration spaces
and compliant motion. IEEE Transactions on Robotics and Automation, 19(3), 2003.

9. Leo Joskowicz and Elisha Sacks. Computer-aided mechanical design using configura-
tion spaces. Computing in Science and Engineering, 1(6):14–21, 1999.

10. Dan Halperin and Eli Packer. Iterated snap rounding. Computational Geometry: The-
ory and Applications, 23(2):209–222, 2002.

11. John Hershberger. Improved output-sensitive snap rounding. In Proceedings of the
twenty-second annual symposium on Computational geometry, pages 357–366, New
York, NY, USA, 2006. ACM Press.

12. Victor Milenkovic. Rotational polygon containment and minimum enclosure using only
robust 2d constructions. Computational Geometry: Theory and Applications, 13:3–19,
1999.

13. Victor Milenkovic. Shortest path geometric rounding. Algorithmica, 27(1):57–86, 2000.
14. Eli Packer. Iterated snap rounding with bounded drift. In Proceedings of the Sympo-

sium on Computational Geometry, pages 367–376, New York, NY, USA, 2006. ACM
Press.

15. Michael T. Goodrich, Leonidas J. Guibas, John Hershberger, and Paul J. Tanenbaum.
Snap rounding line segments efficiently in two and three dimensions. In Symposium
on Computational Geometry, pages 284–293, 1997.

16. S. Fortune. Vertex-rounding a three-dimensional polyhedral subdivision. Discrete and
Computational Geometry, 22:593–618, 1999.

17. S. Fortune. Polyhedral modelling with multiprecision integer arithmetic. Computer-
Aided Design, 29(2):123–133, 1997.

18. T. J. Dekker. A floating-point technique for extending the available precision. Nu-
merische Mathematik, 18(3):224–242, 1971.

19. A. Kaul, M. A. O’Connor, and V. Srinivasan. Computing Minkowski sums of reg-
ular polygons. In Proceedings of the Third Canadian Conference on Computational
Geometry, pages 74–77, 1991.


	Purdue University
	Purdue e-Pubs
	10-7-2011

	Two approximate Minkowski sum algorithms
	Victor Milenkovic
	Elisha P. Sacks
	Repository Citation
	Comments



