1-1-2009

A Continuum-Based Model for Analysis of Laterally Loaded Piles in Layered Soils

D Basu
University of Connecticut - Storrs

Rodrigo Salgado
Purdue University, rodrigo@ecn.purdue.edu

Monica Prezzi
Purdue University, mprezzi@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/civeng

Part of the Civil and Environmental Engineering Commons

Basu, D; Salgado, Rodrigo; and Prezzi, Monica, "A Continuum-Based Model for Analysis of Laterally Loaded Piles in Layered Soils" (2009). Lyles School of Civil Engineering Faculty Publications. Paper 3.
http://docs.lib.purdue.edu/civeng/3

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
A continuum-based model for analysis of laterally loaded piles in layered soils

D. BASU*, R. SALGADO† and M. PREZZI†

INTRODUCTION

Piles subjected to lateral forces and moments at the head are analysed in practice with the $p$--$y$ method (Reese & Cox, 1969; Matlock, 1970; Reese et al., 1974, 1975; Reese & Van Impe, 2001). In the $p$--$y$ method the pile is assumed to behave as an Euler–Bernoulli beam with the soil modelled as a series of discretely spaced springs, each connected to one of the pile segments into which the pile is discretised. The springs model the soil response to loading through $p$--$y$ curves ($p$ is the unit resistance per unit pile length offered by the springs, and $y$ is the pile deflection), which are developed empirically by adjusting the curves until they match actual load--displacement results (Cox et al., 1974; Briaud et al., 1984; Yan & Byrne, 1992; Brown et al., 1994; Gabr et al., 1994; Briaud, 1997; Wu et al., 1998; Bransby, 1999; Ashour & Norris, 2000). However, the $p$--$y$ method often fails to predict pile response (Anderson et al., 2003; Kim et al., 2004), for it is not capable of capturing the complex three-dimensional interaction between the pile and the soil.

The continuum approach is conceptually more appealing; however, in order to model the soil as a continuum, the use of numerical techniques such as the three-dimensional (3D) finite element (FE) method, finite elements with Fourier analysis, the boundary element (BE) method or the finite difference (FD) method is often required (Poulos, 1971a, 1971b; Banerjee & Davis, 1978; Randolph, 1981; Budhu & Davies, 1988; Brown et al., 1989; Verruijt & Kooijman, 1989; Trochanis et al., 1991; Bransby, 1999; Ng & Zhang, 2001; Klar & Frydman, 2002). The 3D FE or FD method can capture the most important features of the complex pile–soil interaction, but three-dimensional analyses are computationally expensive for routine practice. The BE method accounts for the pile–soil interaction by discretising the pile into small strips and modelling the interaction between these strips with the soil continuum through numerical integration of Mindlin’s solution (Mindlin, 1936) for a point force within a continuum.

Considering the soil surrounding the pile as a continuum, Sun (1994), Zhang et al. (2000) and Guo & Lee (2001) developed closed-form solutions based on linear elasticity that can be used to obtain lateral pile deflection with depth. Their analyses capture the three-dimensional aspects of the interaction of the pile–soil system and produce results quickly, which is advantageous in practice. However, these authors made an assumption that the variation of displacements within the soil mass depends on the same displacement function for both the radial and the circumferential directions. This leads to a soil response that is stiffer than it is in reality. Most continuum analyses of laterally loaded piles do not consider soil layering. Soil heterogeneity with depth has been approximately taken into account in the BE and FE analyses by assuming (typically) a linear variation of soil modulus with depth (Poulos, 1973; Randolph, 1981; Budhu & Davies, 1988). The BE analysis has also been used to analyse two-layer systems (Banerjee & Davies, 1978; Pise, 1982). However, BE analysis of laterally loaded piles is strictly not applicable to layered systems, because Mindlin’s solution used in BE analysis is valid only for homogeneous continuums. Verruijt & Kooijman (1989) solved a layered elastic system by discretising the soil layers using FE and the pile by FD methods.

In this paper, an advanced continuum-based method of analysis of laterally loaded piles is proposed by assuming the soil displacement field to have a shape that is consistent...
with the drop in displacement expected as distance from the pile increases, and with the fact that the displacement is expected to depend on the direction of the load with respect to the point considered in the soil. The analysis considers a pile embedded in a multilayered elastic soil (continuum), and rigorously takes into account the three-dimensional pile–soil interaction. The governing differential equations for the pile and soil displacements are developed using variational principles. Closed-form solutions are obtained for pile deflection, and soil displacements are obtained using the one-dimensional (1D) FD method. Pile response obtained using this method compares favourably with 3D FE analysis, although the computation effort required by this method is small. Because soil displacements and strains can be calculated alongside pile deflection using this method, the analysis forms the basis for future analysis that can model the interaction of piles in a group, and can account for soil non-linearity by relating the progressive degradation of soil stiffness to induced soil strains.

Analysis

Problem definition

We consider a pile with a circular cross-section of radius \( r_p \) and length \( L_p \) embedded in a soil deposit that has \( n \) layers (Fig. 1). Each layer extends to infinity in all radial directions, and the bottom (\( n \)th) layer extends to infinity in the downward direction. The vertical depth to the base of any intermediate layer \( i \) is \( H_i \), which implies that the thickness of the \( i \)th layer is \( H_i - H_{i-1} \) with \( H_0 = 0 \) and \( H_n = \infty \). The pile head is at the ground surface, and the base is embedded in the \( n \)th layer. The pile is subjected to a horizontal force \( F_a \) and a moment \( M_a \) at the pile head such that \( F_a \) and \( M_a \) are orthogonal vectors. In the analysis, we choose a cylindrical \((r, \theta, z)\) coordinate system with its origin coinciding with the centre of the pile head and the positive \( z \) axis (coinciding with the pile axis) pointing downwards. The goal of the analysis is to obtain pile deflection as a function of depth caused by the action of \( F_a \) and/or \( M_a \) at the pile head.

Pile

The soil medium is assumed to be an elastic and isotropic continuum, homogeneous within each layer, with Lame’s constants \( \lambda \) and \( G \). There is no slippage or separation between the pile and the surrounding soil, or between the soil layers. The pile behaves as an Euler–Bernoulli beam with a constant flexural rigidity \( E_p I_p \).

Potential energy

The total potential energy of the pile–soil system, including both the internal and external potential energies, is given by

\[
\Pi = \frac{1}{2} E_p f_p \int_0^{L_p} \left( \frac{d^2 w}{dz^2} \right)^2 dz + \int_0^\infty \int_0^{2\pi} \int_0^\infty \frac{1}{2} \sigma_{pq} \varepsilon_{pq} r dr d\theta dz
+ \int_0^\infty \int_0^{2\pi} \int_0^\infty \frac{1}{2} \sigma_{pq} \varepsilon_{pq} r dr d\theta dz
- F_a w \bigg|_{z=0} + M_a \left. \frac{dw}{dz} \right|_{z=0}
\]

where \( w \) is the lateral pile deflection, and \( \sigma_{pq} \) and \( \varepsilon_{pq} \) are the stress and strain tensors (see Fig. 2) in the soil (summation is implied by the repetition of the indices \( p \) and \( q \) in the product of corresponding stress and strain components). The first integral represents the internal potential energy of the pile. The second and third integrals represent the internal potential

![Fig. 1. Laterally loaded pile in layered elastic medium](image1)

![Fig. 2. (a) Displacements and (b) stresses within soil mass](image2)
energy of the continuum (note that the third integral represents the energy of the column of soil with radius \( r_p \) starting at the pile base and extending to infinity downward, while the second integral represents the energy of the soil surrounding both the pile and this column of soil). The remaining two terms represent the external potential energy.

**Soil displacement**

We assume the following displacement fields (Fig. 2) in the soil:

\[
\begin{align*}
  u_r &= w(z) \phi_r(r) \cos \theta \\
  u_\theta &= -w(z) \phi_\theta(r) \sin \theta \\
  u_z &= 0
\end{align*}
\]

(2a)

(2b)

(2c)

where \( w(z) \) is a displacement function (with a dimension of length), varying with depth \( z \), representing the deflection of the pile axis; \( \phi_r(r) \) and \( \phi_\theta(r) \) are dimensionless displacement functions varying with the radial coordinate \( r \); and \( \theta \) is the angle measured clockwise from a vertical reference section \( (r = r_0) \) that contains the applied force vector \( F_p \).

Equation (2c) is based on the assumption that the vertical displacement of the pile caused by the lateral load and moment applied at the pile head is negligible.

The functions \( \phi_r(r) \) and \( \phi_\theta(r) \) describe how the displacements within the soil mass (due to pile deflection) decrease with increasing radial distance from the pile axis. We set \( \phi_r(r) = 1 \) and \( \phi_\theta(r) = 1 \) at \( r = r_p \) (this ensures compatibility at the pile/soil interface) and \( \phi_r(r) = 0 \) and \( \phi_\theta(r) = 0 \) at \( r = \infty \) (this ensures that displacements in the soil decrease with increasing radial distance from the pile). Thus \( \phi_r \) and \( \phi_\theta \) vary between 1 at the pile/soil interface and 0 at infinite radial distance from the pile.

**Stress–strain–displacement relationships**

The strain–displacement relationship, considering equation (2), leads to

\[
\begin{bmatrix}
  \varepsilon_{rr} \\
  \varepsilon_{\theta\theta} \\
  \varepsilon_{zz} \\
  \gamma_{r\theta} \\
  \gamma_{r z} \\
  \gamma_{\theta z}
\end{bmatrix} = \begin{bmatrix}
  -\frac{\partial u_r}{\partial r} & -\frac{u_r}{r} & \frac{1}{r} \frac{\partial u_\theta}{\partial \theta} & 0 & 0 & 0 \\
  -u_r & \frac{\partial u_\theta}{\partial \theta} & \frac{1}{r} \frac{\partial u_r}{\partial r} & \frac{1}{r} & 0 & 0 \\
  -\frac{\partial u_z}{\partial z} & -\frac{\partial u_r}{\partial r} & \frac{1}{r} \frac{\partial u_\theta}{\partial \theta} & 0 & 0 & 0 \\
  -\frac{1}{r} \frac{\partial u_r}{\partial \theta} & -\frac{\partial u_\theta}{\partial \theta} & \frac{1}{r} \frac{\partial u_z}{\partial z} & 0 & 0 & 0 \\
  -\frac{1}{r} \frac{\partial u_r}{\partial \theta} & -\frac{\partial u_\theta}{\partial \theta} & \frac{1}{r} \frac{\partial u_z}{\partial z} & 0 & 0 & 0 \\
  -\frac{1}{r} \frac{\partial u_r}{\partial \theta} & -\frac{\partial u_\theta}{\partial \theta} & \frac{1}{r} \frac{\partial u_z}{\partial z} & 0 & 0 & 0
\end{bmatrix} \begin{bmatrix}
  \phi_r(r) \\
  \phi_\theta(r) \\
  \phi_z(r) \\
  \phi_{r\theta}(r) \\
  \phi_{r z}(r) \\
  \phi_{\theta z}(r)
\end{bmatrix}
\]

(3)

The strains in equation (3) are related to stresses using the elastic stress–strain relationships, which allow expression of the soil potential energy density \( \frac{1}{2} \delta \epsilon \delta \phi \) in terms of the displacement functions \( w(z) \), \( \phi_r(r) \) and \( \phi_\theta(r) \), and the soil elastic constants \( k_s \) and \( G_s \) (see Appendix 1). Substituting this expression for the potential energy density into equation (1), we obtain

\[
\Pi = \frac{1}{2} F_p \int_0^{r_p} \left( \frac{d^2 w}{dz^2} \right)^2 dz + \frac{\pi}{2} \int_0^\infty \left( \lambda_s + 2G_s \right) w^2 \left( \frac{d \phi_r}{dr} \right)^2 dr
\]

\[
+ 2\lambda_s w^2 \frac{d \phi_r}{dr} \left( \frac{\phi_r - \phi_\theta}{r} \right) + (\lambda_s + 3G_s) w^2 \left( \frac{\phi_r - \phi_\theta}{r} \right)^2 dr
\]

\[
+ G_s \left( \frac{d \phi_\theta}{dr} \right)^2 + 2G_s w^2 \frac{d \phi_r}{dr} \left( \frac{\phi_r - \phi_\theta}{r} \right) + G_s \left( \frac{d \phi_\theta}{dr} \right)^2 dr
\]

\[
+ \frac{G_s}{r} \int_0^{r_p} \phi_\theta^2 r^2 dr - F_s w \left( \frac{d \phi_r}{dr} \right)^2 - M_s \frac{d w}{dz} \mid_{z=0}^{z=r_p}
\]

(4)

**Principle of minimum potential energy**

A system in equilibrium exists with its potential energy at a minimum. Hence minimising the potential energy of the pile–soil system (i.e. setting the first variation of the potential energy \( \delta \Pi \) equal to 0) produces the equilibrium equations. We apply \( \delta \Pi = 0 \) to obtain an equation of the form (see Appendix 1)

\[
\delta \Pi = \left[ A(w) \delta w + B(w) \delta \left( \frac{d w}{d z} \right) \right] + \left[ C(\phi_r) \delta \phi_r + D(\phi_\theta) \delta \phi_\theta \right] = 0
\]

(5)

Since the variations \( \delta w(z) \), \( \delta (d w/dz) \), \( \delta \phi_r(r) \) and \( \delta \phi_\theta(r) \) of the functions \( w(z) \) (and its derivative), \( \phi_r(r) \) and \( \phi_\theta(r) \) are independent, the terms associated with each of these variations must individually be equal to zero (i.e. \( A(w) \delta w = 0 \), \( B(w) \delta (dw/dz) = 0 \), \( C(\phi_r) \delta \phi_r = 0 \) and \( D(\phi_\theta) \delta \phi_\theta = 0 \)) in order to satisfy the condition \( \delta \Pi = 0 \). The resulting equations produce the optimal functions \( w_{opt}(z) \), \( \phi_{r, opt}(r) \) and \( \phi_{\theta, opt}(r) \) that describe the equilibrium configuration of the pile–soil system.

While considering the terms of the variation of the potential energy related to \( w \), we do so for the following sub-domains: \( 0 \leq z \leq H_1 \), \( H_1 \leq z \leq H_2 \), \( \ldots \), \( H_{n-1} \leq z \leq L_p \), and \( L_p < z < \infty \). Accordingly, \( w \) is forced to satisfy equilibrium within each of these sub-domains, and hence over the entire domain. For \( \phi_r \) and \( \phi_\theta \) the domain over which the potential energy and its variation are calculated is \( r_p \leq r < \infty \).

**Soil displacement profiles**

We first consider the variation of \( \phi_r(r) \). Referring back to the equation \( \delta \Pi = 0 \), represented by equation (5), we first collect all the terms associated with \( \delta \phi_r \) and collectively set them equal to zero to obtain

\[
\int_{r_p}^{\infty} \left[ -m_s \left( \frac{d^2 \phi_r}{dr^2} + \frac{d \phi_r}{dr} \right) + (m_s + m_{3s}) \frac{d \phi_\theta}{dr} \right] dr
\]

\[
+ m_s \frac{\phi_r}{r} - m_s \frac{\phi_\theta}{r} + n_r r \phi_r \right] \frac{d \phi_r}{dr} \right) + \left( m_{3s} \frac{d \phi_r}{dr} + m_{3s} \phi_r - m_{3s} \phi_\theta \right) \frac{d \phi_r}{dr} \bigg]_{r_p}^{\infty} = 0
\]

(6)
where
\[ m_{i1} = (\lambda_i + 2G_i) \int_0^\infty w^2 dz = \sum_{i=1}^{n+1} (\lambda_{i1} + 2G_{i1}) \int_{H_{i1}}^{H_i} w_{i1}^2 dz \] (7)
\[ m_{i2} = G_i \int_0^\infty w^2 dz = \sum_{i=1}^{n+1} G_i \int_{H_{i1}}^{H_i} w_{i1}^2 dz \] (8)
\[ m_{i3} = \lambda_i \int_0^\infty w^2 dz = \sum_{i=1}^{n+1} \lambda_{i1} \int_{H_{i1}}^{H_i} w_{i1}^2 dz \] (9)
\[ m_{i4} = (\lambda_i + 3G_i) \int_0^\infty w^2 dz = \sum_{i=1}^{n+1} (\lambda_{i1} + 3G_{i1}) \int_{H_{i1}}^{H_i} w_{i1}^2 dz \] (10)
\[ n_i = G_i \int_0^\infty \left( \frac{dw}{dz} \right)^2 dz = \sum_{i=1}^{n+1} G_i \int_{H_{i1}}^{H_i} \left( \frac{dw_i}{dz} \right)^2 dz \] (11)

The subscript \( i \) in the above equations refers to the \( i \)th layer of the multilayered continuum (Fig. 1); \( w_i \) represents the function \( w(z) \) in the \( i \)th layer with \( w_i|_{z=H_i} = w_{i+1}|_{z=H_i} \). Note that the \( n \)th (bottom) layer is split into two parts, with the part below the pile denoted by the subscript \( n+1 \); therefore, in the analysis, \( H_n = L_p \) and \( H_{n+1} = \infty \).

The last term on the left-hand side of equation (6) is a multiple of the subtraction of the value of \( \phi \), \( \phi \) is not known a priori in this interval, so \( H_n = L_p \) and \( H_{n+1} = \infty \). Note that the \( n \)th (bottom) layer is split into two parts, with the part below the pile denoted by the subscript \( n+1 \); therefore, in the analysis, \( H_n = L_p \) and \( H_{n+1} = \infty \).

The term \( \phi \) is a function of the composition of the multilayered continuum, \( C(\phi_i) \), at \( r = r_0 \), \( r = r_0 \), \( r = r_0 \) and \( r = r_0 \). The function \( w(z) \) has a non-zero variation (i.e. \( \phi \) is not known a priori in this interval, so \( C(\phi_i) = 0 \), which means the integrand in equation (6) must be set to zero, leading to the differential equation

\[ \frac{d^2\phi}{dr^2} + \frac{1}{r} \frac{d\phi}{dr} - \left( \frac{\gamma_1}{r} \right)^2 + \left( \frac{\gamma_2}{r_{p1}} \right)^2 \phi = \frac{\gamma_1^2}{r} \frac{d\phi}{dr} - \left( \frac{\gamma_1}{r} \right)^2 \phi \] (12)

where the \( \gamma \)s are dimensionless constants given by \( \gamma_1^2 = m_4/m_1, \gamma_2^2 = m_4/m_2, \) and \( \gamma_2^2 = m_3/m_2, \gamma_3^2 = m_3/m_1 \). When solved, equation (12) yields \( \phi(r) \).

We now consider the variation of \( \phi \). We collect the terms containing \( \phi \) in the equation \( \delta \Pi = 0 \) (equation (5)) and, proceeding similarly as for \( \phi \), we get the following governing differential equation for \( \phi \):

\[ \frac{d^2\phi}{dr^2} + \frac{1}{r} \frac{d\phi}{dr} - \left[ \frac{\gamma_1^2}{r} \right]^2 + \left( \frac{\gamma_2^2}{r_{p1}} \right)^2 \phi = \frac{\gamma_1^2}{r} \frac{d\phi}{dr} - \left( \frac{\gamma_1^2}{r} \right)^2 \phi \] (13)

with the following boundary conditions: \( \phi_0 = 0 \) at \( r = \infty \) and \( \phi_0 = 1 \) at \( r = r_0 \), where \( \gamma_1^2 = m_4/m_1, \gamma_2^2 = m_4/m_2, \gamma_3^2 = m_5/m_2, \) and \( \gamma_3^2 = (m_3 + m_5)/m_2 \).

Pile displacement

Finally, we consider the variation of the function \( w \) and its derivative. We again refer back to the equation \( \delta \Pi = 0 \), collect all the terms associated with \( \delta w \) and \( \delta (dw/dz) \) and equate their sum to zero, to obtain
We first consider the domain below the pile, that is, \( L_p < z < \infty \). The terms associated with \( \varphi \) and \( \delta w/\delta z \) in equation (14) for \( L_p < z < \infty \) are equated to zero. Since the variation of \( w(z) \) with depth is not known a priori within the interior of the domain \( L_p < z < \infty \), \( \delta w_{n+1}/\delta z \neq 0 \), and so the integrand in the integral between \( z = L_p \) and \( z = \infty \) must be equal to zero in order to satisfy equation (14). This results in the differential equation

\[
2t_{n+1} \frac{d^2w_{n+1}}{dz^2} - k_n w_{n+1} = 0
\]  

(17)

The displacement in the soil must vanish for \( z \) equal to infinity. We use this as our boundary condition:

\[
w_{n+1} = 0 \quad \text{at } z = \infty
\]  

(18)

The above equation implies that \( \delta w_{n+1} = 0 \) at \( z = \infty \), making the term associated with \( \delta w \) at \( z = \infty \) equal to zero (which is of course required to satisfy equation (14)).

The solution of equation (17) satisfying boundary condition (18) is

\[
w_{n+1} = w_n|_{z=L_p} e^{-\sqrt{(k_n/2t_{n+1})(z-L_p)}}
\]  

(19)

We now consider the function \( w \) for the domains \( 0 \le z \le H_1 \), \( H_1 < z \le H_2 \), \ldots, \( H_{n-1} < z \le L_p \). The terms containing \( \delta w \) and \( \delta (dw/\delta z) \) in equation (14) are equated to zero for each domain. Considering the integrals associated with each individual layer (or each domain \( H_{i-1} < z < H_i \)), the integrand for each of these integrals must equal zero, because \( \delta w_i \neq 0 \) (as the function \( w(z) \) within the domains is not known a priori). This gives us the differential equation for the \( i \)th layer, which, expressed in terms of normalised depth \( z = z/L_p \) and displacement \( w = w/L_p \), is given by

\[
d^2\tilde{w}_i/dz^2 - 2t_i \tilde{w}_i + \tilde{k}_i \tilde{w}_i = 0
\]  

(20)

The terms associated with the boundaries (i.e. \( z = H_i \)) of each domain in equation (14) must also each be equal to zero. For each boundary, there are two terms: one multiplying \( \delta w_i \) and another multiplying \( \delta (dw/\delta z) \). Setting each separately equal to zero yields the boundary conditions for the differential equations represented by equation (20). These terms can be seen to be a product of an expression and the variation of the displacement or of its derivative. If the displacement or its derivative is specified at the boundary, then its variation is equal to zero; otherwise, the expression multiplying the variation of the displacement or of its derivative is equal to zero. The boundary conditions at the pile head \( (z = 0) \) are

\[
\tilde{w}_1 = \text{constant}
\]  

(21a)

or

\[
d^2\tilde{w}_1/dz^2 - 2t_1 \tilde{w}_1 + \tilde{F}_a = 0
\]  

(21b)

and

\[
d\tilde{w}_1/dz = \text{constant}
\]  

(21c)

or

\[
d^2\tilde{w}_1/dz^2 - \tilde{M}_a = 0
\]  

(21d)

At the interface between any two layers \( (z = H_i \) or \( z = \tilde{H}_i \)),

\[
\tilde{w}_i = \tilde{w}_{i+1}
\]  

(22a)

\[
d\tilde{w}_i/dz = d\tilde{w}_{i+1}/dz
\]  

(22b)

\[
d^2\tilde{w}_i/dz^2 - 2t_i \frac{d\tilde{w}_i}{dz} = d^2\tilde{w}_{i+1}/dz^2 - 2t_{i+1} \frac{d\tilde{w}_{i+1}}{dz}
\]  

(22c)

\[
d^4\tilde{w}_i/dz^4 = \frac{d^2\tilde{w}_{i+1}}{dz^2}
\]  

(22d)

At the pile base \( (z = L_p \) or \( \tilde{z} = 1 \)), the boundary conditions are

\[
\tilde{w}_a = \text{constant}
\]  

(23a)

or

\[
d^4\tilde{w}_a/dz^4 = 2t_a \frac{d\tilde{w}_a}{dz} = -2t_{a+1} \frac{d\tilde{w}_{a+1}}{dz}
\]  

(23b)

and

\[
\frac{d\tilde{w}_a}{dz} = \text{constant}
\]  

(23c)

or

\[
d^2\tilde{w}_a/dz^2 = 0
\]  

(23d)

Equation (23b) is further simplified and expressed solely in terms of \( \tilde{w}_a \) by differentiating \( w_{n+1} \) in equation (19) with respect to \( z \), normalising the expression, and then substituting it back into equation (23b) to yield

\[
d^4\tilde{w}_a/dz^4 = 2t_a \frac{d\tilde{w}_a}{dz} \sqrt{2k_a(t_{a+1} + \tilde{w}_a) = 0}
\]  

(23d’)

The dimensionless terms in the above equations are defined as \( t_i = t_i L_p^2/E_p I_p \), \( k_i = k_i L_p^2/E_p I_p \), \( F_a = F_a L_p^2/E_p I_p \), \( M_a = M_a L_p/E_p I_p \) and \( H_i = H_i/L_p \).

The governing differential equation for the pile (equation (20)) resembles that of an Euler–Bernoulli beam resting on an elastic foundation (the soil mass). The parameter \( k_i \) (with dimensions of FL\(^{-2}\), where \( F = \) force and \( L = \) length) is related to the modulus of subgrade reaction (or to the ‘spring constant’ proposed by Winkler, 1867) and determines the portion of the soil resistance due to compressive stresses in the elastic medium (Fig. 3). On the other hand, the

Fig. 3. Illustration of the two sources of soil resistance: soil compression and shear
parameter $t_i$ (with dimension of F) determines the fraction of the soil resistance due to the shear stresses that develop between soil layers of infinitesimal thickness displaced differentially in the lateral direction (Vlasov & Leon'tev, 1966).

The boundary conditions (equations (22a)–(22d)) at the interface of any two layers ($z = H_i$) ensure the continuity of pile deflection, slope of the deflection curve (= $d\hat{w}/dz$), bending moment (= $E_0I_d(d^2\hat{w}/dz^2)$) and shear force (= $E_0I_d(d^2\hat{w}/dz^2)$) − 2$t_i(d\hat{w}/dz)$ (the shear force has contributions from both pile flexure and soil deformation). At the pile head ($z = 0$) the shear force equals the applied force (equation (21b)), and either the slope of the pile deflection curve is a known constant (equation (21c)) (this boundary condition is generally used with the value of slope taken equal to zero when fixed-head conditions are used to idealise the case of a pile that is part of a group of piles joined at the head by a cap) or the pile bending moment is equal to the applied moment (equation (21d)) (free-head case). Equation (21a) must be used in the analysis instead of equation (21b) to estimate the magnitude of an applied force required to produce a given (known) head deflection. Similarly, if, for both the free- and fixed-head cases, it becomes necessary to estimate the magnitude of an applied moment that produces a given (known) slope at the head, equation (21c) must be used.

At the pile base ($z = 1$), either the pile deflection is set (equation (23a)) (used for the ideal fixed-base case, for which the deflection is taken equal to zero, which may be used with satisfactory results if the pile is socketed into a very firm layer, like hard rock) or the shear force at a section infinitesimally above the pile base is equal to that infinitesimally below (equation (23b)) (free-base case).

The other boundary condition active at the pile base is that either the slope is a constant (equation (23c)) (assumed to be zero for the fixed-base case) or the pile bending moment is zero (equation (23d)) (free-base case).

Expressions for the $\gamma$'s in terms of dimensionless deflections

The $\gamma$'s appearing in equations (12) and (13) are expressed in terms of the dimensionless pile deflection and slope as follows:

\[
\gamma_1 = \frac{1}{\psi} \sum_{i=1}^{n} \left( \lambda_{n+1} + 3G_{n+1} \right) I_{H_{i-1}}^{H_i} \frac{d\hat{w}}{dz} + \frac{I_{n+1}^{i+1} \hat{w}_{n|z=1}}{2k_n}
\]

\[
\gamma_2 = \frac{1}{\psi} \sum_{i=1}^{n} \left( \lambda_{n+1} + 2G_{n+1} \right) I_{H_{i-1}}^{H_i} \frac{d\hat{w}}{dz} + \frac{I_{n+1}^{i+1} \hat{w}_{n|z=1}}{2k_n}
\]

\[
\gamma_3 = \frac{1}{\psi} \sum_{i=1}^{n} \left( \lambda_{n+1} + 2G_{n+1} \right) I_{H_{i-1}}^{H_i} \frac{d\hat{w}}{dz} + \frac{I_{n+1}^{i+1} \hat{w}_{n|z=1}}{2k_n}
\]

where $\psi = L_p/r_p$. These expressions can be directly used in the computations.

ANALYTICAL SOLUTION FOR PILE DEFLECTION

The general solution of equation (20) is given by

\[
\hat{w}_i(z) = C_1^i \Phi_1 + C_2^i \Phi_2 + C_3^i \Phi_3 + C_4^i \Phi_4
\]

where $C_1^i, C_2^i, C_3^i$ and $C_4^i$ are integration constants (for the $i$th layer), and $\Phi_1, \Phi_2, \Phi_3$ and $\Phi_4$ are independent solutions (functions of $z$) of the differential equation. The functions $\Phi_1, \Phi_2, \Phi_3$ and $\Phi_4$ are standard trigonometric or hyperbolic functions that arise in the solution of the linear ordinary differential equations (Table 1). The integration constants for each layer can be determined using the boundary conditions. The boundary conditions given in equations (21)–(23) lead to a system of linear algebraic equations (see Appendix 2) of the form

\[
[\Theta] [C] = [F]
\]

where $[\Theta]_{4n \times 4n}$ is a matrix containing the functions $\Phi_1, \Phi_2, \Phi_3$ and $\Phi_4$ calculated at the boundaries of the soil layers, $[C]_{4n \times 1}$ is the vector of unknown integration constants of all the layers, and $[F]_{4n \times 1}$ is the right-hand side vector containing the applied forces and/or displacements (the subscript $4n$ denotes the number of equations, which is four times the number of soil layers). Simultaneous solution of the system of equations represented by equation (31) produces the values of the integration constants $C_1^i, C_2^i, C_3^i$ and $C_4^i$, which, when substituted in equation (30), produce the particular solution of pile deflection (i.e. the pile deflection profile) for a given set of boundary conditions and applied loads. The slope of the deflected pile axis, and the bending moment and shear force in the pile, can be obtained as a function of depth by successively differentiating equation (30) and using the values of the integration constants.

FINITE DIFFERENCE SOLUTION FOR SOIL DISPLACEMENTS

The differential equations (12) and (13) for $\phi_r$ and $\phi_\theta$ are solved using the FD method. The equations are interdependent and must, as a result, be solved simultaneously. Using the central-difference scheme, equations (12) and (13) can be respectively written as

\[
\begin{align*}
\phi_r(r, \theta) &= \frac{1}{\rho} \sum_{i=1}^{n} \left( \lambda_{n+1} + 3G_{n+1} \right) I_{H_{i-1}}^{H_i} \frac{d\phi_r}{dr} + \frac{I_{n+1}^{i+1} \phi_r|z=1}{2k_n} \\
\phi_\theta(r, \theta) &= \frac{1}{\rho} \sum_{i=1}^{n} \left( \lambda_{n+1} + 2G_{n+1} \right) I_{H_{i-1}}^{H_i} \frac{d\phi_\theta}{dr} + \frac{I_{n+1}^{i+1} \phi_\theta|z=1}{2k_n} \\
\end{align*}
\]
where \( j \) represents the \( j \)th node, which is at a radial distance \( r_j \) from the pile axis; and \( \Delta r \) is the distance between consecutive nodes (discretisation length). The total number of discretised nodes \( m \) should be sufficiently large that the infinite domain in the radial direction can be adequately modelled (Fig. 4). The discretisation length \( \Delta r \) should be sufficiently small to maintain a satisfactory level of accuracy.

\[
\begin{align*}
\phi_{j+1}^{+1} - 2\phi_j^+ + \phi_{j-1}^+ &= \frac{1}{\Delta r^2} \left[ \left( \frac{\gamma_j'}{r_j} \right)^2 + \frac{\gamma_j''}{r_j^3} \right] \\
- \left[ \left( \frac{\gamma_j'}{r_j} \right)^2 + \frac{\gamma_j''}{r_j^3} \right] \phi_j' &= \frac{\gamma_j^3}{r_j^4} \phi_j^0 - \left( \frac{\gamma_j'}{r_j} \right)^2 \phi_j^0 \\
\phi_{j+1}^\theta - 2\phi_j^\theta + \phi_{j-1}^\theta &= \frac{1}{\Delta r^2} \left[ \left( \frac{\gamma_j'}{r_j} \right)^2 + \frac{\gamma_j''}{r_j^3} \right] \\
- \left[ \left( \frac{\gamma_j'}{r_j} \right)^2 + \frac{\gamma_j''}{r_j^3} \right] \phi_j' &= -\frac{\gamma_j^3}{r_j^4} \phi_j^\theta \end{align*}
\]

(32)

(33)
Equation (32), along with the boundary conditions \( \phi_j^{(1)} = 1 \) (at \( r = r_p \)) and \( \phi_j^{(m)} = 0 \) (at \( r = \infty \)), is applied to the discretised nodes, yielding the equation

\[
\begin{bmatrix}
\begin{array}{cccccc}
1 & 0 & 0 & \cdots & \cdots & \cdots \\
0 & K_{2,2}^\phi & K_{2,3}^\phi & \cdots & \cdots & \cdots \\
0 & K_{3,2}^\phi & K_{3,3}^\phi & K_{3,4}^\phi & 0 & \cdots \\
0 & 0 & K_{4,3}^\phi & K_{4,4}^\phi & \cdots & \cdots \\
\vdots & \vdots & \vdots & \ddots & \ddots & \ddots \\
0 & \cdots & \cdots & 0 & K_{j,j-1}^\phi & K_{j,j}^\phi & K_{j,j+1}^\phi & 0 & \cdots \\
0 & \cdots & \cdots & 0 & 0 & K_{m-2,m}^\phi & K_{m-2,m-1}^\phi & 0 \\
0 & \cdots & \cdots & 0 & 0 & 0 & K_{m-1,m-1}^\phi \end{array}
\end{bmatrix}
\begin{bmatrix}
\phi_1^{(1)} \\
\phi_2^{(1)} \\
\phi_3^{(1)} \\
\phi_4^{(1)} \\
\vdots \\
\phi_{j-1}^{(1)} \\
\phi_j^{(1)} \\
\phi_{m-1}^{(1)} \\
\phi_m^{(1)}
\end{bmatrix}
= \begin{bmatrix}
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & \cdots & \cdots & \cdots \\
0 & 0 & 0 & \cdots & \cdots & \cdots \\
0 & 0 & 0 & \cdots & \cdots & \cdots \\
\vdots & \vdots & \vdots & \ddots & \ddots & \ddots \\
0 & \cdots & \cdots & 0 & \cdots & \cdots \\
0 & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & \cdots & \cdots & \cdots \\
1 & F_1 & F_2 & F_3 & \cdots & F_m
\end{bmatrix}
\]

(34)

The non-zero elements of the left-hand side matrix \([K^\phi]_{m \times m}\) in the above equation are given by

\[
K_{j,j-1}^\phi = -\frac{2}{\Delta r^2} \left[ \left( \frac{\gamma_j}{r_j} \right)^2 + \left( \frac{\gamma_j}{r_p} \right)^2 \right]
\]

(35)

\[
K_{j,j}^\phi = \frac{1}{\Delta r^2} \left[ 1 + \frac{2}{r_j \Delta r} \right]
\]

(36)

\[
K_{j,j+1}^\phi = \frac{1}{\Delta r^2} \left[ 1 + \frac{2}{r_j \Delta r} \right]
\]

(37)

where \( j \) represents nodes 3 through \( m-2 \). The elements corresponding to node 2 and \( m-1 \) are given by:

\[
F_2 = -\frac{1}{\Delta r} - \frac{1}{2 \Delta r} \frac{\gamma_1^2}{r_2} \phi_0^j - \left( \frac{\gamma_1}{r_2} \right)^2 \phi_0^j
\]

(39)

Using equation (33) and the boundary conditions \( \phi_0^{(1)} = 1 \) (at \( r = r_0 \)) and \( \phi_0^{(m)} = 0 \) (at \( r = \infty \)), a matrix equation (similar to equation (34)) for \( \phi_0^j \) can also be formed for the discretised nodes:

\[
[K^\phi]\{\phi_0^j\} = \{F^\phi\}
\]

(41)

The number and positioning of the non-zero elements of \([K^\phi]_{m \times m}\) in equation (41) are exactly the same as that of \([K^\phi]_{m \times m}\) of equation (34). The expressions of the off-diagonal elements of \([K^\phi]_{m \times m}\) and \([K^\phi]_{m \times m}\) are also the same (i.e. \( K_{j,j}^\phi = K_{j,j}^\phi \) for \( p \neq q \)). The diagonal elements of \([K^\phi]_{m \times m}\) for \( j = 2 \) to \( m-1 \) are given by

\[
K_{j,j}^\phi = -\frac{2}{\Delta r^2} \left[ \left( \frac{\gamma_j}{r_j} \right)^2 + \left( \frac{\gamma_j}{r_p} \right)^2 \right]
\]

(42)

Since the right-hand side vectors \( \{F^\phi\}_{m \times 1} \) and \( \{F^\phi\}_{m \times 1} \) contain the unknowns \( \phi_0^j \) and \( \phi_\theta \), iterations are necessary to obtain their values. An initial estimate of \( \phi_j^\phi \) is made and given as input to \( \{F^\phi\}_{m \times 1} \) and \( \phi^\phi_j \) is determined by solving equation (41). The \( \phi_\theta \) values are then given as input to \( \{F^\theta\}_{m \times 1} \) to obtain \( \phi^\theta \) from equation (34). The newly obtained values of \( \phi_j^\phi \) are again used to obtain new values of \( \phi^\phi_0 \), and the iterations are continued until convergence is reached. The criteria \( \frac{1}{\sum_{j=1}^{m} |\phi_j^\phi_{\text{previous}} - \phi_j^\phi_{\text{current}}|} \leq 10^{-6} \) and \( \sum_{j=1}^{m} |\phi_j^{\theta_{\text{previous}} - \phi_j^{\theta_{\text{current}}}}| \leq 10^{-6} \) are used (a stringent value of 10^{-6} is used because this iterative solution scheme is central to another set of iterations described next) to ensure that accurate values of \( \phi^\phi \) and \( \phi^\theta \) are obtained.

**SOLUTION ALGORITHM**

In order to obtain pile deflections by solving equation (20), the soil parameters \( k_i \) and \( t_i \) must be known. However, these soil parameters depend on \( \phi^\phi \) and \( \phi^\theta \), which are not known a priori. Hence an iterative algorithm (separate from the iterations between \( \phi^\phi \) and \( \phi^\theta \) described in the previous section) is necessary to solve the problem. First, initial guesses for \( \gamma_1 \) to \( \gamma_6 \) are made, and for these assumed values \( \phi^\phi \) and \( \phi^\theta \) are determined using the iterative technique described in the previous section. Using the calculated values of \( \phi^\phi \) and \( \phi^\theta \), \( k_i \) and \( t_i \) are calculated by numerical integrations (with \( \Delta r \) of Fig. 4 as the step length). Using the values of \( k_i \) and \( t_i \), the pile deflection is calculated. From the calculated values of pile deflection and slope of the deformed pile, \( \gamma_1 \) to \( \gamma_6 \) are obtained. The new values of \( \gamma_1 \) to \( \gamma_6 \) are then used to recalculate \( \phi^\phi \) and \( \phi^\theta \), and so on. The entire process is repeated until convergence on each of the \( \gamma_s \) is attained. The tolerance limit prescribed on the \( \gamma_s \) between the \( p \)th and \((p+1)\)th iteration is \( |\gamma_1^{(p+1)} \gamma_6^{(p)}| \) \leq 0.001. The details of the solution steps are given in the form of a flow chart in Fig. 5. We chose an initial guess of ‘one’ for all the \( \gamma_s \), but any other
choice would produce results with the same level of accuracy at approximately the same computation time.

**BENEFITS OF THE PRESENT ANALYSIS**

This analysis is an improvement over the analysis of Sun (1994) for laterally loaded piles in homogeneous soil on at least two accounts: (a) our assumption of the displacement field is more general and more realistic than that assumed by Sun (1994), who chose $v_0(r) = 0$ for both the displacements $u_r$ and $u_0$ (equation (2)); and (b) we obtained solutions for a multilayered soil, whereas the solution of Sun (1994) is valid only for a single soil layer.

The need for an improved form for the displacement field (equation (2)) arises from the fact that the displacement assumption of Sun (1994) produces zero displacement in the soil mass perpendicular to the direction of the applied force $F_a$ (Fig. 6). Consequently, the resultant displacement vector $\mathbf{u} = \varepsilon_r u_r + \varepsilon_\theta u_\theta$ ($\varepsilon_r$ and $\varepsilon_\theta$ are the unit basis vectors in the radial and tangential directions respectively) at any point within the soil mass is forced to be parallel to the applied force $F_a$. Thus the displacement field in the soil mass (which, in general, has a component perpendicular to the direction of $F_a$) is artificially constrained, the normal strain in the circumferential direction $\varepsilon_\theta$ (equation (3)) becomes zero, and the pile response is stiffer than what it is in reality. In fact, Guo & Lee (2001) found that the Sun (1994) analysis produces unreliable pile response, particularly if the Poisson’s ratio of soil is greater than 0.3. This artificially stiff pile response is not observed in our analysis. To illustrate this point, we present below two examples comparing the results of our analysis, the analysis based on the displacement assumption of Sun (1994), and 3D FEA analysis.

We consider as an illustration of use of the analysis a 15 m long drilled shaft, with a diameter of 0.6 m and pile modulus $E_s = 24 \times 10^6$ kN/m$^2$, embedded in a four-layer soil deposit with $H_1 = 2.0$ m, $H_2 = 5.0$ m, and $H_3 = 8.3$ m; $E_{s1} = 20$ MPa, $E_{s2} = 35$ MPa, $E_{s3} = 50$ MPa and $E_{s4} = 80$ MPa; $\nu_{s1} = 0.35$, $\nu_{s2} = 0.25$, $\nu_{s3} = 0.2$ and $\nu_{s4} = 0.15$ ($E_{si}$ and $\nu_{si}$ are the soil Young’s modulus and Poisson’s ratio for the $i$th layer; $E_{si}$ and $\nu_{si}$ are related to $\lambda_{si}$ and $G_{si}$ by $\lambda_{si} = E_{si}/\nu_{si}/(1+\nu_{si})(1-2\nu_{si})$ and $G_{si} = E_{si}/2(1+\nu_{si})$). A horizontal force $F_s = 300$ kN acts on the pile. The pile head and base are free to deflect and rotate. Fig. 7 shows the pile deflection profile obtained using our analysis, the analysis based on the displacement assumption of Sun (1994), and a 3D finite element analysis (FEA). The pile response obtained from our analysis closely matches that of the 3D FEA (a difference of 9.6% in the head deflection was observed between our analysis and the FEA); the analysis of Sun (1994) produces a stiffer pile response.

Next, we consider a large-diameter drilled shaft, 40 m long, with a diameter of 1.7 m and $E_s = 25 \times 10^6$ kPa, embedded in a four-layer soil profile with $H_1 = 1.5$ m, $H_2 = 3.5$ m, and $H_3 = 8.5$ m; $E_{s1} = 20$ MPa, $E_{s2} = 25$ MPa, $E_{s3} = 40$ MPa and $E_{s4} = 80$ MPa; $\nu_{s1} = 0.35$, $\nu_{s2} = 0.3$, $\nu_{s3} = 0.25$ and $\nu_{s4} = 0.2$. A 3000 kN force acts at the pile head, which is free to deflect and rotate. Fig. 8 shows the pile deflection profiles, as obtained from our analysis, the analysis based on the displacement assumption of Sun (1994), and 3D FEA. As before, our results match those of the FEA more closely than the results based on the Sun (1994) assumption; the difference in the head deflection obtained from our analysis and FEA is 6.6%.

The 3D FEA analyses were performed using ABAQUS. The domain for these analyses can be visualised as a cylinder of soil mass containing the pile at its centre as a concentric cylinder. The top (horizontal) surface of the soil cylinder was flush with the pile head, and the bottom (horizontal) surface was located at a finite distance below the pile base (thus the soil mass below the pile base participating in the pile–soil interaction was incorporated in the analysis). The horizontal force $F_s$ (acting at the pile head) was applied as a uniformly distributed shear stress (i.e. force per unit pile cross-section area) acting on the pile-head surface (the...
distributed shear stress multiplied by the pile cross-section area produced $F_a$). The vertical plane passing through the pile axis parallel to $F_a$ is a plane of symmetry (the plane contains the $F_a$ vector) and divides the cylindrical domain into two equal and symmetrical halves. Only one such half was used as the analysis domain. Different boundary conditions were prescribed at different boundaries of the FE domain: all components of displacements were assumed to be zero along the bottom (horizontal) surface and along the outer, curved (vertical) surface of the soil domain; on the (vertical) boundary surface created by the plane of symmetry, the displacement perpendicular to the boundary was assumed to be zero. A perfect contact (with no slippage or separation) between the pile and the surrounding soil was assumed. The radial distances of the outer curved (vertical) boundary of the soil domain from the pile axis were taken as 20 m and 25 m for the 15 m and 40 m piles respectively; the corresponding vertical distances from the pile base to the bottom (horizontal) boundary of the soil domain were 5 m and 20 m. Twenty-noded brick elements were used to represent both the pile and the soil for both the problems. The element size in the pile and at the pile/soil interface was approximately 0.1 m for both the examples, and was increased gradually with increasing radial distance from the pile axis to 2.0 m (for the 15 m pile) and 3.8 m (for the 40 m pile) at the outer curved boundary of the soil domain. The number of degrees of freedom used for the 15 m pile was 56653, and that used for the 40 m pile was 90564. The optimal domains and meshes described above were obtained by ensuring that there were no boundary effects and by performing convergence checks.

The CPU run times of the 3D FE analyses (run in a 16-core x86 server containing eight 2.6 MHz dual-core Opteron 8218 processors with 32 GB RAM) were 9 min (for the 15 m pile) and 14 min (for the 40 m pile), while the CPU run time for our analysis (performed with a Fortran code run in an Intel Centrino Duo 2.0 GHz processor with 2 GB RAM) was 9-75 s for both the examples. Considering the fact that construction of the geometry (domain) and optimal meshing for a FEA requires considerable time, our analysis is much more efficient than FEA because, in addition to being faster, the input to our analysis (the dimensions and elastic properties of pile, and the thickness and elastic constants of soil layers) is accomplished through a simple text file.

Finally, we consider the field example of a laterally loaded pile load test performed by McClelland & Focht (1958). The length ($L_p$) and radius ($r_p$) of the pile are 23 m and 0.305 m, and the pile was embedded in a normally consolidated clay. The pile was acted upon by a lateral force $F_s = 300$ kN and a negative moment $M_a = -265$ kNm at the head. Randolph (1981) back-calculated the pile modulus $E_p$ as $68.42 \times 10^6$ kN/m² from the reported pile flexural rigidity. Randolph (1981) further suggested, based on back-calculation of test results to match his FEA (coupled with Fourier series), that the soil shear modulus profile for this soil deposit can be represented as $G_s = 0.8z \times 10^3$ kN/m³ with $v_s = 0.3$. We divided the soil profile into four layers and calculated the shear modulus at the middle of each layer, which were considered the representative values for each layer (Table 2).

Using these values of soil modulus, we calculated the pile deflection profile using both our analysis and that based on the assumption of Sun (1994). Fig. 9 shows the pile responses. Also plotted are the measured pile response and that obtained by Randolph (1981). Our analysis produces a pile deflection profile that closely matches the measured profile.

We now investigate how an explicit incorporation of soil layering can be useful in obtaining proper pile response. For that purpose, we studied the response of two piles – a short stubby pile with $L_p = 10$ m, $r_p = 0.5$ m and $E_p = 25 \times 10^6$ kN/m² and a long slender pile with $L_p = 20$ m, $r_p = 0.25$ m and $E_p = 25 \times 10^6$ kN/m² – for various soil profiles. Both piles are subjected to a horizontal force $F_s = 1000$ kN, and both are assumed to be free at the head and base.

For the short pile ($L_p = 10$ m), we consider the following cases:

(a) a homogeneous soil layer with $G_s = 25$ MPa
(b) a two-layer system with $H_1 = 2.0$ m, $G_s1 = 25$ MPa and $G_s2 = 50$ MPa

Table 2. Soil properties at the pile load test site of McClelland & Focht (1958)

<table>
<thead>
<tr>
<th>Depth, m</th>
<th>Extent of soil layers, m</th>
<th>Shear modulus, $G_s$, MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>0 to −4.0</td>
<td>1.6</td>
</tr>
<tr>
<td>6.0</td>
<td>−4.0 to −8.0</td>
<td>4.8</td>
</tr>
<tr>
<td>10.0</td>
<td>−8.0 to −12.0</td>
<td>8.0</td>
</tr>
<tr>
<td>17.5</td>
<td>−12.0 to great depth</td>
<td>14.0</td>
</tr>
</tbody>
</table>

Fig. 8. Deflection profile of a 40 m long drilled shaft

Fig. 9. Deflection profile for the pile load test of McClelland & Focht (1958)
(c) a two-layer system with $H_1 = 2 \text{ m}$, $G_{s1} = 25 \text{ MPa}$ and $G_{s2} = 100 \text{ MPa}$

(d) a two-layer system with $H_1 = 2 \text{ m}$, $G_{s1} = 50 \text{ MPa}$ and $G_{s2} = 25 \text{ MPa}$

The Poisson's ratio was kept constant at 0.25 for all the cases and for all the layers. Figs 10(a), 10(b) and 10(c) show the pile deflection, bending moment and shear force profiles.

Next, we consider the long pile ($L_p = 20 \text{ m}$) and obtain the pile response for the following cases:

(a) a homogeneous soil layer with $G_s = 10 \text{ MPa}$

(b) a four-layer system with $H_1 = 1 \text{ m}$, $H_2 = 3 \text{ m}$, $H_3 = 5 \text{ m}$, $G_{s1} = 10 \text{ MPa}$, $G_{s2} = 20 \text{ MPa}$, $G_{s3} = 40 \text{ MPa}$ and $G_{s4} = 80 \text{ MPa}$

(c) a four-layer system with $H_1 = 1 \text{ m}$, $H_2 = 3 \text{ m}$, $H_3 = 5 \text{ m}$, $G_{s1} = 10 \text{ MPa}$, $G_{s2} = 40 \text{ MPa}$, $G_{s3} = 40 \text{ MPa}$ and $G_{s4} = 80 \text{ MPa}$

The Poisson's ratio was again assumed to be 0.25 for all the cases and for all the layers. Figs 11(a) and 11(b) show the pile deflection and bending moment profiles for the above cases respectively.

The effect of soil layering on lateral pile response is evident from Figs 10 and 11. The modulus and thickness of different soil layers (particularly those near the pile head) have a definite effect on lateral pile response. The examples show that proper characterisation of soil deposits and explicit accounting for the different layers are necessary for accurate prediction of pile response and optimal design of laterally loaded piles. Using our analysis, the three-dimensional interaction between pile and soil can be explicitly accounted for with full consideration of soil layering. The assumptions made in the estimation of soil displacements (that the displacements can be represented as products of separable variables, and that the vertical displacement is zero), albeit reasonable, do not strictly represent the exact displacement field for a pile in an ideal elastic soil: consequently, the pile response obtained from this analysis will deviate, even if slightly, from the actual pile response in elastic soil. Notwithstanding the limitations of these assumptions, pile response comparable with those obtained from FEA can be produced at much less time and cost.

In addition to pile deflection, the analysis produces the soil displacement field surrounding a pile (using equation (2)). Thus, if additional piles are present in the neighbourhood of a loaded pile, the effect of the loaded pile on the neighbouring piles can be determined by modifying the analysis. Such an analysis can be further extended to develop a method of analysis of pile groups.

The analysis described in this paper is valid for linear elastic soils. As a result, its use is restricted to those problems for which an equivalent elastic soil modulus can be obtained from field sites. Given that the analysis matches carefully performed FEA rather well, it can be used as a benchmark in future studies. Additionally, the analysis serves as the basis for more elaborate analysis that can take into account soil non-linearity, because the degradation of soil stiffness resulting from progressive yield due to loading of the pile can be obtained from the soil strain field surrounding the pile (equation (3)), which is available as a result of this analysis (in general, modulus degradation of soil depends on the strains induced and on the shear strength of soil).

CONCLUSIONS

An advanced method of analysis for a single, circular pile embedded in a multilayered elastic medium and subjected to a horizontal force and a moment at the head was presented.
The differential equations governing pile deflection and soil displacements were derived using energy principles. The equation of pile deflection was solved analytically, and the results comparable with 3D FEA. Using this method, pile response accurately. The present analysis has the capability to produce pile response with full consideration of soil non-linearity, and to analyse pile groups.

The solution depends on a set of parameters $\gamma_1$ to $\gamma_6$ that determine the rate at which the displacements in the soil medium decay with increasing radial distance from the pile axis. These parameters are not known a priori and must be determined iteratively. Hence an iterative scheme was developed and coded to obtain solutions for a variety of boundary conditions and soil profiles. Notwithstanding the iterations on the $\gamma$s, the solutions are obtained in seconds.

Illustrations of use of the analysis for layered soils show that soil layering has a definite impact on pile response. Hence proper stress characterisation and explicit accounting for the different layers are necessary to predict lateral pile response accurately. The present analysis has the capability to produce pile response with full consideration of soil layering. The analysis can be further extended to account for soil non-linearity, and to analyse pile groups.

**ACKNOWLEDGEMENTS**

This material is based in part upon work supported by the National Science Foundation under Grant No. 0556347. Tanusree Chakraborty assisted in the finite element analyses, for which we are grateful.

**APPENDIX 1**

The potential energy density of the soil can be expressed in terms of the displacement functions and elastic constants as

$$\frac{1}{2} \sigma_{pq} \epsilon_{pq} = \frac{1}{2} \left[ (\lambda_s + 2G_s) w \left( \frac{d\phi_s}{dr} \right)^2 \cos^2 \theta \right] + 2\lambda_s w^2 \frac{d\phi_s}{dr} \left( \frac{\phi_s - \phi_w}{r^2} \right) \cos^2 \theta + G_s w^2 \left( \frac{\phi_s - \phi_w}{r^2} \right)^2 + G_s w^2 \left( \frac{d\phi_s}{dr} \right)^2 \sin^2 \theta + 2G_s w^2 \left( \frac{\phi_s - \phi_w}{r} \right) \frac{d\phi_w}{dr} \sin^2 \theta + G_s \left( \frac{dw}{dz} \right)^2 \phi_s^2 \cos^2 \theta + G_s \left( \frac{dw}{dz} \right)^2 \phi_s^2 \cos^2 \theta \right] \tag{46}$$

Substituting equation (46) in equation (1) and performing integrations with respect to $\theta$ produces equation (4). Applying the principle of minimum potential energy to equation (4) results in
\[ + \left\{ \int_{0}^{H} \int_{0}^{\infty} \left[ \frac{\partial}{\partial x} \phi(x) \right] \psi_{i}^{(0)}(y) \, dx \, dy \right\} \left( \frac{\partial}{\partial y} \phi(x) \right) + \left( 4 \phi_{i}^{(0)} \frac{\partial}{\partial y} \phi_{i}^{(0)} \right) - \frac{2}{r} \left( \frac{\partial}{\partial r} \phi_{i}^{(0)} \right) \frac{\partial}{\partial r} \phi_{i}^{(0)} + \left( \frac{\partial}{\partial r} \phi_{i}^{(0)} \right) \frac{\partial}{\partial r} \phi_{i}^{(0)} - \frac{2}{r^2} \frac{\partial}{\partial r} \phi_{i}^{(0)} \right) \, dx \, dy = 0 \]
The vector \([C]\) (with a dimension of \(4n\)) in equation (31) is given by:

\[
C = \begin{bmatrix} C_1^{(1)} & C_2^{(1)} & C_3^{(1)} & C_4^{(1)} & \cdots & C_1^{(n)} & C_2^{(n)} & C_3^{(n)} & C_4^{(n)} \end{bmatrix}^T
\]  

The superscript \(T\) implies the transpose of a matrix.

The right-hand side vector of equation (31) is given by

\[
[F_{\text{daxi}}] = \begin{bmatrix} F_1 & F_2 & 0 & \cdots & 0 \end{bmatrix}^T
\]  

with \(F_2 = 0\) for the fixed-head condition and \(F_2 = 0\) for the free-head condition.

REFERENCES


