
Authentication and Key Management for Advanced

Metering Infrastructures Utilizing Physically

Unclonable Functions

Mohamed Nabeel, Sam Kerr, Xiaoyu Ding, Elisa Bertino

Department of Computer Science, Purdue University

305 N. University Street, West Lafayette, IN, 47906, USA
{nabeel, stkerr, ding55, bertino}@cs.purdue.edu

Abstract—Conventional utility meters are increasingly being
replaced with smart meters as smart meter based AMIs (Ad-
vanced Metering Infrastructures) provide many benefits over
conventional power infrastrucutures. However, security issues
pertaining to the data transmission between smart meters and
utility servers have been a major concern. With large scale AMI
deployments, addressing these issues is challenging. In particular,
as data travels through several networks, secure end-to-end
communication based on strong authentication mechanisms and
a robust and scalable key management schemes are crucial for
assuring the confidentiality and the integrity of this data. In this
paper, we propose an approach based on PUF (physically unclon-
able function) technology for providing strong hardware based
authentication of smart meters and efficient key management to
assure the confidentiality and integrity of messages exchanged
between smart meters and the utility. Our approach does not
require modifications to the existing smart meter communication.
We have developed a proof-of-concept implementation of the
proposed approach which is also briefly discussed in the paper.

I. INTRODUCTION

End-to-end secure communication between utility servers

and smart meters is a key requirement for the overall security

of the Advanced Metering Infrastructure (AMI). The mes-

sages exchanged between the utility servers and smart meters

travel through multiple hops before reaching the destination.

Collector nodes and, sometimes smart meters act as routing

nodes. In other words, a message between the utility server

and a smart meter may travel through one or more collector

nodes and other smart meters. Different hops use different

communication protocols. For example, the hop between the

utility servers and collectors may use a 3G network whereas

the hop between the collectors and smart meters may use

a radio link. Even though most of these communication

protocols provide link level security, this is not sufficient to

protect messages traveling between the utility servers and

smart meters as compromised/malicious intermediate nodes

may not be trusted for the confidentiality and integrity of

the messages. Therefore end-to-end message level security is

essential to protect messages from atttacks carried through the

communication channels and intermediate nodes.

In initial AMI deployments, the data formats, security

measures, and protocols for smart meter security were pro-

prietary. However, because of the difficulties in achieving

secure communication when proprietary methods are adopted

and because of interoperability issues, the industry is moving

towards a common standard developed by ANSI and known

as the ANSI C12 standard [1]. ANSI C12 standard compliant

smart meters are required to store a symmetric key used to

encrypt and create message authentication codes (MAC), and

the passwords used to provide different access privileges in

specific tables in the smart meter. These keys and passwords

must in turn be protected by a secure mechanism. Approaches

by which data is encrypted with a set of keys which are in

turn encrypted with other keys are very common; for exampe

such an approach is used for SQL Server Database Encryption.

In the AMI, the application of such an approach requires a

scalable, efficient, and robust key management scheme able

to support very large number of smart meters and also able

to support smart meter authentication. In the absence of a

strong authentication mechanism, smart meters are vulnerable

to man-in-the-middle attacks. An impostor may persuade the

utility server that it is communicating with a valid smart meter

and may cause damages.

In this work, we address the problem of designing a

key management scheme able to achieve secure end-to-end

communication in the AMI. Specifically, our solution pro-

vides an efficient approach to manage keys and a strong

authentication mechanism. Our solution is based on the use

of PUF (physically unclonable function) devices which are

inexpensive to manufacture and provide a hardware based

strong authentication mechanism resistant to spoofing attacks.

We utilize the PUF devices’ hardware based one-way function

to generate and re-generate the symmetric keys and access

level passwords for smart meters. The PUF based secret

generation mechanism provides strong protection against key

leakage as the master key is never stored in memory.

The rest of the paper is organized as follows. Section II

provides an overview of the AMI and smart meters. Section III

describes the key building blocks used in our approach.

Section IV describes our overall scheme. Section V provides

an overview a proof-of-concept implementation we develop

based on the proposed approach. Section VI briefly discusses

the related work, before concluding in Section VII.

II. BACKGROUND

In this section we provide a high-level overview of the AMI

and smart meters. This overview focuses on the aspects that

are relevant for the presentation of our protocols and therefore

we abstract away several components and details.

A. Advanced Metering Infrastructure

Utility
 Collector

Smart

Meter 1

Smart

Meter 2

Smart

Meter 3

Smart

Meter 4

EDGE

HSDPA

3G

Wi MAX

Proprietary

Outs as a

router

Radio link

ZigBee

Fig. 1. A simplified AMI

The Advanced Metering Infrastructure (AMI) consists of

four main components: the utility company (utility, for short),

data collectors, often located in the neighborhood, smart

meters, and the home or office appliances. The communication

between smart meters and appliances can use several com-

munication protocols such as ZigBee, Wi-Fi, and Ethernet.

In this work, we focus only on the communication between

smart meters and the utility (see Figure 1). The messages

between these two components are transmitted across multiple

networks. These messages go through one or more collectors

and possibly through other smart meters which act as routing

nodes. Long distance communication protocols such as 3G,

EDGE or HSPDA, are used between the utility and collectors.

Short distance communication protocols such as radio links are

used between collectors and smart meters. Different network

segments use different communication protocols and have their

own transport level security.

B. Smart Meters

Meter

board

Comm.

Board

 Serial port

Data tables

Smart Meter

Fig. 2. Two components of a smart meter

An ANSI C12 standard compliant smart meter consists of

two internal components (see Figure 2): the meter board and

the communication board connected through a serial port.

The meter board contains a set of tables storing various

information including keys and passwords used for secure

communication and privilege levels. It also performs power

consumption measurements. The communication board is re-

sponsible for communications with the outside nodes such

as collectors, other smart meters, or home/office appliances,

and performing any required computation. Using an interrupt

based mechanism, the communication board fetches data and

other necessary information such as keys from the meter board

whenever it needs to send data to the utility. A common

scenario is to have the firmware in the communication board to

periodically, typically every 15 minutes, fetch meter readings

from the meter board and send it to the utility.

C. The ANSI C12 Standard

Security protocols for communication between smart meters

and the utility are defined by the ANSI C12 standards.

According to the ANSI C12.22 standard, smart meters are

recommended to use a authenticated symmetric encryption

algorithm to assure confidentiality and a message authenti-

cation code (MAC) to assure authenticity and integrity. The

authenticated encryption algorithm specified uses a variant of

EAX mode [2] called EAX’ along with AES for encryption and

a symmetric block cipher, called CMAC for authentication and

message integrity.

The ANSI C12.19 standard outlines the format and purpose

of the tables available in the meter board. For example, table

42 (the password table) stores passwords for the different priv-

ilege levels, and table 45 (the the key table) stores the keys for

encryption and authentication. Smart meters provide an optical

port through which an operator can execute various commands

based on the operator’s security level. ANSI C12.18 standard

defines six security levels, L0 to L5, with different privileges

and with the highest privilege being L5. The security level

L0 requires no password. For each of other security levels,

the password table contains a password which is initially set at

the time of manufacture or installation. The operator’s security

level is equal to the password entered to gain access to the

smart meter through the optical port. Similar to the concept

of multi-level security (MLS), the operator can execute any

command that requires a security level less than or equal to

its security level.

III. BUILDING BLOCKS

In this section, we give an overview of the key hardware

and cryptographic constructs we use in our scheme.

A. Physically Unclonable Functions

PUFs (Physically unclonable functions) are one-way func-

tions that are embodied in a physical structure [3]. A PUF

takes an input challenge Ci ∈ C, where C is the set of

all possible challenges and produces a response Ri ∈ R,

where R is the set of all possible responses. Mathematically,

a PUF can be represented as a function PUF : C → R. The

function is based on the intrinsic randomness that exists in

the integrated circuit used to generate the response and cannot

be controlled. As PUF relies on the random variations during

the integrated circuit fabrication process, even two PUFs with

the same layout results in two different functions. In other

words, it is physically impossible to make two PUFs behave

identically.

We exploit the following characteristics of PUFs in our

work.

• Given a PUF device, and a challenge Ci as input produces

approximately the same response Ri. In practice, error

correction codes, such as Reed-Solomon, are used to

remove the noise from the response and make it stable

and identical.

• Given a PUF device, and a response Ri, it is difficult to

find the corresponding challenge Ci.

• Given a PUF device, two different challenges C1 6= C2

produces two different responses R1 6= R2.

• Given a challenge Ci, two different PUFs produces two

different responses Ri 6= R′

i.

As introduced in previous research [4], we incorporate the

PUF device in a feedback loop for a system-on-chip (SoC)

design. Figure 3 shows a high-level view of the PUF SoC.

The ECU (Error Correcting Unit) performs error correction on

the PUF response with noise so that, in a real setting, every

time the same challenge is given the PUF along with the ECU

produces the same response. The CC (Cryptographic Core) is

a stand-alone hardware component that provides cryptographic

services to the communication board of the smart meter. The

operations of the CC depends on the required functionality.

In our approach, Section IV, the CC implements a secure

hashing, and encryption operations for use by smart meters.

The Reg (register) stores the initial challenge and then later

get overwritten by the subsequent responses from PUF-ECU

component. Notice that PUF-ECU-Reg forms a feedback loop.

We utilize this feedback mechanism to generate keys chaining

responses in a sequence. This technique is similar to using

hash chains to generate one-time keys where a cryptographic

hash function is applied repeatedly to obtain a new key. An

adversary cannot derive the old keys from the new key due

to the pre-image resistance property of the hash function.

However, PUF based implementations are known to be more

secure than software based implementations [3].

PUF
 ECU

Reg
 CC

R

i

R
i
’

C
i

Fig. 3. PUF SoC design

B. Pedersen commitment

A cryptographic “commitment” is a piece of information

that allows one to commit to a value while keeping it hidden,

and preserving the ability to reveal the value at a later time.

The Pedersen commitment [5] is an unconditionally hiding and

computationally binding commitment scheme which is based

on the intractability of the discrete logarithm problem.

Definition 1 (Pedersen Commitment): It consists of the fol-

lowing three algorithms.

Setup A trusted third party T chooses a multiplicatively

written finite cyclic group G of large prime order p so that

the computational Diffie-Hellman problem is hard in G.1 T

chooses two generators g and h of G such that it is hard

to find the discrete logarithm of h with respect to g, i.e., an

integer x such that h = gx. It is not required that T know

the secret number x. T publishes (G, p, g, h) as the system

parameters.

Commit The domain of committed values is the finite field Fp

of p elements, which can be represented as the set of integers

Fp = {0, 1, . . . , p − 1}. For a party U to commit a value

α ∈ Fp, U chooses β ∈ Fp at random, and computes the

commitment c = gαhβ ∈ G.

Open U shows the values α and β to open a commitment c.

The verifier checks whether c = gαhβ .

C. Zero-knowledge proof of knowledge

(Schnorr’s scheme)

The zero-knowledge proof of knowledge (ZKPK) protocol

used in this paper can be viewed a natural extension of

Schnorr’s scheme [6]. In our proposed approach, we use ZKPK

as a secure means of smart meter authentication to the utility.

As in the case of the Pedersen commitment scheme, a

trusted party T generates public parameters G, p, g, h. A

Prover which holds private knowledge of values α and β

can convince a Verifier that Prover can open the Pedersen

commitment c = gαhβ as follows.

1) Prover randomly chooses y, s ∈ F
∗

p, and sends Verifier

the element d = gyhs ∈ G.

2) Verifier picks a random value e ∈ F
∗

p, and sends e as a

challenge to Prover.

3) Prover sends u = y + eα, v = s + eβ, both in Fp, to

Verifier.

4) Verifier accepts the proof if and only if guhv = d · ce

in G.

IV. OUR SCHEME

Figure 4 shows the overall block diagram of smart meters

we utilize. As it can be seen from the figure, without modi-

fying the existing communication model of smart meters, we

integrate a PUF SoC with each smart meter. PUF SoC modules

act similar to a TPM but it neither utilizes public and private

key pair nor store any master keys.

In our threat model, we assume that the intermediate nodes

in the AMI and the network is not trusted for the confiden-

tiality and the integrity of the messages. Further, smart meters

are susceptible to spoofing and key invasion attacks [7].

1For a multiplicatively written cyclic group G of order q, with a generator
g ∈ G, the Computational Diffie-Hellman problem (CDH) is the following
problem: Given ga and gb for randomly-chosen secret a, b ∈ {0, . . . , q−1},
compute gab.

Meter

board

Comm.

Board

Serial

Communication

Data

tables
 PUF

SoC

Fig. 4. Smart Meter with a PUF SoC

A. Procedures and Algorithms

Our secure AMI system undergoes the following procedures

and algorithms in order to provide end-to-end security between

smart meters and the utility.

Initialization:

The utility initializes the system by executing the

Setup of the Pedersen Commitment scheme. It defines the

cryptographic hash functions: H1 : {0, 1}t → {0, 1}m,

H2 : {0, 1}t → Fp, and H1 : {0, 1}m × {0, 1}m → {0, 1}m,

where t is the length of PUF responses and m is a security

parameter. These cryptographic functions are implemented

in the CC of the PUF SoC. The utility also defines two

challenges Ca and Ck in order to generate responses using

each smart meter PUF device for authentication and smart

meter secret generation respectively. Let the AMI consists of

n smart meters, Mi, i = 1, 2, · · · , n.

Smart Meter Registration:

Using out-of-band communication, preferably before the

installation of smart meters, the utility executes the following

procedure with each smart meter Mi. We assume that the util-

ity is in physical contact with Mi so that the communication

channel is private and authentic.

The utility generates the PUF responses Ri
a and Ri

k giving

Ca and Ck as input. It computes the Pedersen commitment

of Ri
a as describe in Section III-B. It stores the Pedersen

commitment of the Ri
a, denoted by comi and the hashed value

H1(R
i
k), denoted by si, in its database. Since Ri

a ∈ {0, 1}t,
before creating the commitment, Ri

a is first converted to a

unique value in Fp by applying H2. By storing only the

commitments, comi, i = 1, 2, · · · , n, the actual responses,

Ri
a, i = 1, 2, · · · , n, are never leaked even if the utility

database is compromised. The hashed value of the responses

Ri
k are taken as the secrets si in order to prevent leaking

challenge-response pairs and guarantee strong secrets.

Refreshing PUF Secrets:

In order to improve the security, the comi and si values

are updated periodically. We utilize the feedback loop of

the PUF SoC to perform the update and use the previous

response to obtain a new response. As shown in Algorithm 1,

in order to update si of the smart meter Mi, the utility sends

the tuple (Ca, r), where r is the number iterations to be

performed at the PUF SoC to generate the new Ri
k. Note that

the current Ri
k is produced with r − 1 iterations. Let s

(r)
i be

the secret produced by executing the PUF’s feedback loop r

times and applying the hash function H1. The CC of the PUF

SoC computes both s
(r−1)
i and s

(r)
i , encrypts the latter with

the former and sends it to the utility. The utility can decrypt

the message using the current secret for the smart meter and

update the si and r values in its database. A similar approach

is followed to refresh comi. com
(r)
i is the commitment of

the value Ri
a(r) produced by executing the PUF’s feedback

loop r times and applying the hash function H2.

Algorithm 1 PUF Feedback loop to refresh secrets

1: Refresh(Ci, r)
2: rounds = 0
3: while ++rounds ≤ r do
4: Ri

k

′

← PUF(Ci)
5: Ri

k ← error-correction(Ri

k

′

)
6: if rounds == r − 1 then
7: Ri

k(r − 1) = H1(R
i

k)
8: end if
9: Ci ← Ri

k

10: end while
11: si(r) = H1(R

i

k)

12: Return E
s
(r−1)
i

(s
(r)
i

)

Smart Meter Authentication:

Smart

Meter

M
i

Utility

1

3

(C
a
, r
i
)

Prove the knowledge

 of R

a

i

2

PUF

SoC
(C
a
, r
i
)
 R

a

i

Fig. 5. Smart Meter Authentication

Now we explain how the utility authenticates smart meters

before initiating any further communication. Recall that

during the registration, the utility stores a commitment comi

for each smart meter Mi. As shown in Figure 5, the utility

sends the tuple (Ca, r) to the smart meter Mi. Mi uses Ca

as the initial challenge to the PUF and generates the the

response Ri
a(r) by executing the feedback loop r times and

applying H2 on the last response. Mi provides a ZKPK

of the ability to open the commitment com
(r)
i using the

algorithm described in Section III-C. Notice that the ZKPK

of the commitment does not reveal the PUF response Ri
a(r)

to the utility and, in fact, the response never leaves out of

the PUF SoC. Since PUF produces volatile responses, it

is extremely difficult to carry out invasive attacks such as

extracting the responses used in the ZKPK. Therefore, the

same challenge-response pair can be used authenticate smart

meters multiple times. Further, as different PUF devices

produce unique responses, it is very difficult to clone a PUF

and launch spoofing attacks. Therefore, PUF integrated smart

meters provide strong authentication.

Smart Meter Key/Password Generation and Re-Key:

Recall that in an ANSI compliant smart meter, symmetric

keys and access level passwords are stored in two specific

tables in the meter board of the smart meter. A symmetric key

in the key table is used to provide confidentiality and integrity

to the messages communicated between the smart meter and

the utility. PUF SoC is utilized to generate the symmetric key

and store it in the key table. For the smart meter Mi, given

(Ck, r), PUF SoC generates si as explained earlier, selects a

random label l0i and generates an m-bit random value ki using

H3(si, l
0
i). ki is used as the EAX’ encryption/decryption and

CMAC key and stored in the key table of the meter board.

Similarly, five more random labels l
j
i , j = 1, 2, · · · , 5 are

selected and an access level password, pwd
j
i (= H3(si, t

j
i)), is

created for each access level Lj, j = 1, 2, · · · , 5. The random

labels l
j
i , j = 0, 1, · · · , 5 are sent to the utility. The utility can

also generate the same key ki and the access level passwords

as it knows si and t
j
i values. In order to update a smart meter

symmetric key and access level passwords, that is to re-key,

the same procedure is repeated with a new set of random

labels. Note that each smart meter has a unique key as it is

generated from a unique response of PUF. It makes revocation

and addition of smart meters to the AMI easy.

Smart

Meter

M
i

Utility

1

3

(C
k
, r
i
)

l
i

j
, j = 0, 1, .., 5

2

PUF

SoC
(C
k
, r
i
)
 s

i

Fig. 6. Re-keying a smart meter

Compromise of the smart meter keys kj’s or access level

passwords does not leak the PUF keys si’s due to the

pre-image resistance property of H3. Therefore, the above

re-key approach can update smart meter keys even if the

current smart meter keys are compromised.

Adding/Revoking Smart Meters:

As the secret key for each smart meter is generated in-

dependently, adding a new smart meter does not affect the

secret keys generated for the existing smart meters. The

utility executes the registration and key/password generation

procedures. In order to revoke a smart meter, the utility simply

removes the corresponding record from its database.

As shown earlier in this section, our secret generation proce-

dures use simple operations such as PUF challenge-repsponse

function, error correction function and cryptographic hashing,

and therefore our scheme can easily scale to large number of

smart meters.

B. Secure End-to-End Messaging

After generating keys/passwords or re-keying all smart

meters, the utility database looks like in Table I. The notations

and symbols used in the table are defined earlier in this section.

TABLE I

DATABASE AT THE UTILITY

Meter r (Ca) s r (Ck) com l0 . . . l5

M1 r1a s1 r1k com1 l01 . . . l51
M2 r2a s2 r2k com2 l02 . . . l52
. .

Mn rna sn rnk comn l0n . . . l5n

Whenever the utility wants to communicate with a smart

meter, Mi, it fetches the record corresponding to Mi in Table I

and executes the authentication procedure described earlier in

this section using the parameters Ca, r
i
a and comi. Mi can

successfully authenticate itself only if it can dynamically gen-

erate the response Ri
a(ri) using the integrated PUF SoC. After

successfully authenticating Mi, the utility sends authenticated

encrypted messages using the AES algorithm with the EAX’

mode. Notice that the utility derives the smart meter secret

key krii from si and t0i values in its database. Since only

Mi can derive this key, unauthorized access or modification

of the messages by intermediate nodes, such as collectors or

other smart meters, is prevented. Similarly, smart meters send

authenticated encrypted messages, such as meter readings, to

the utility by fetching the symmetric key from its key table

and encrypting using the EAX’ cipher.

C. Supporting Secure Broadcast Messaging

In addition to unicast messages, the utility at times need

to broadcast messages, such as firmware updates and control

messages, to a set of smart meters.

A naive approach to broadcast a message is to choose a

random session key, encrypt the message using the session

key, and finally encrypt the session key using each of the smart

meter secret keys. However, such an approach is inefficient,

as it requires multiple encryptions and decryptions.

A better approach is to utilize a broadcast group key

management scheme [8]. Using smart meter keys as secrets,

such an approach can efficiently and securely broadcast a

message to any subset of smart meters. Due to space limitation,

we omit the details.

V. IMPLEMENTATION

To demonstrate a proof-of-concept for our PUF integrated

smart meters for secure end-to-end communication, we devel-

oped a prototype implementation. Figure 7 shows the layout of

our implementation setup. We utilized an ANSI standard com-

pliant smart meter produced by Meter-ON which is usually

used for sub-metering. Additionally, the communication board

of the smart meter provides a way to communicate through Wi-

Fi. We implemented the PUF feedback loop using the Xilink’s

Spartan-6 FPGA board which is connected to a PC through

a serial port and the remaining functions of error correction

and cryptographic operations in the PC. The PC has an Intel

Core i5-2430 2.4Gz processor and runs a 64-bit Linux kernel

2.6.32. The PC is connected to the smart meter through the

ANSI C12.19 optical port. The utility communicates with the

smart meter through the Wi-Fi link. We used OpenSSL for the

cryptographic functions. Each execution of the PUF produced

a 32-bit output. We observed that our implementation executed

the PUF in 2.4 ms and the SHA-1 on the 32 bit PUF response

in 0.2 ms on average. We report the performance analysis of

our prototype in the extended version of our paper.

PC

Meter

board

Comm.

Board

Tables

Smart Meter

USB
 USB

FPGA

(PUF)

Optical port

Utility

Wi-Fi

Fig. 7. Proof-of-concept Implementation Setup

VI. RELATED WORK

In this section, we briefly compare previous research work

on PUFs and smart grid security.

Physically Unclonable Functions:

PUFs have been applied in many other applications.

Gassend et al. [3] analyzes the security of PUF constructions

and apply it to several applications including smartcard au-

thentication and certified execution. Suh et al. [9] shows how

to enable low-cost authentication of integrated circuits and

volatile secrets for cryptographic operations. Atallah et al. [10]

utilizes PUF technology to bind software to native hardware

in a virtualization environment. Kirkpatrick et al. [4] presents

a hardware based approach to create read once keys which,

for example, could be applied to construct one-time programs

and perform program obfuscation.

Smart Grid Security:

Fouda et al. [11] proposes an approach to authenticate smart

grid nodes based on Diffie-Hellman key exchange protocol.

Li et. al [12] proposes multicast authentication using one-time

signatures. There has been research efforts to support key man-

agement schemes for secure unicast communication [13], [14]

and broadcast communication [15], [16]. All such schemes are

based on non-volatile memory technologies and vulnerable to

spoofing/invasive attacks.

VII. CONCLUSIONS

We have proposed an approach to secure end-to-end com-

munication in an AMI integrating the PUF technology with

ANSI standard compliant smart meters. Our approach protects

the confidentiality and the integrity of the messages and

strongly authenticates smart meters. Furthermore, by exploit-

ing the intrinstic characteristics of PUF devices, we prevent the

leakage of secret keys utilized by smart meters. Our prototype

implementation shows that it is practical and efficient to

utilize PUF-enabled smart meters to provide secure end-to-

end communication.

As future work, we plan to design and implement techniques

to defend against denial of service attacks and to integrate

our protocols with OASIS Key Management Interoperability

Protocol (KMIP) [17]. We also plan to develop an FPGA-

based smart meter that will integrate the PUF and the smart

meter functions on a single device.

ACKNOWLEDGEMENTS

We would like to thank Athula Kulatunga and Uditha S.

Navaratne from the Smart Meter Integration Lab (SMIL) of

Purdue University for their valuable information on smart

meters and providing smart meters for the proof-of-concept

implementation.

REFERENCES

[1] “ANSI C12 smart grid meter package,” http://goo.gl/PQxkW.
[2] M. Bellare, P. Rogaway, and D. Wagner, “The eax mode of operation,”

in FSE ’04, 2004, pp. 389–407.
[3] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Silicon physical

random functions,” in CCS ’02. New York, NY, USA: ACM, 2002,
pp. 148–160.

[4] M. S. Kirkpatrick, S. Kerr, and E. Bertino, “Puf roks: a hardware
approach to read-once keys,” in ASIACCS ’11. New York, NY, USA:
ACM, 2011, pp. 155–164.

[5] T. Pedersen, “Non-interactive and information-theoretic secure verifiable
secret sharing,” in CRYPTO ’91. London, UK: Springer-Verlag, 1992,
pp. 129–140.

[6] C. Schnorr, “Efficient identification and signatures for smart cards,” in
CRYPTO ’89. New York, NY, USA: Springer-Verlag New York, Inc.,
1989, pp. 239–252.

[7] R. J. Anderson and M. G. Kuhn, “Low cost attacks on tamper resistant
devices,” in Proceedings of the 5th Int. Workshop on Security Protocols.
London, UK, UK: Springer-Verlag, 1998, pp. 125–136.

[8] N. Shang, M. Nabeel, F. Paci, and E. Bertino, “A privacy-preserving
approach to policy-based content dissemination,” in ICDE ’10, 2010.

[9] G. E. Suh and S. Devadas, “Physical unclonable functions for device
authentication and secret key generation,” in DAC ’07. New York, NY,
USA: ACM, 2007, pp. 9–14.

[10] M. J. Atallah, E. D. Bryant, J. T. Korb, and J. R. Rice, “Binding software
to specific native hardware in a vm environment: the puf challenge and
opportunity,” in VMSec ’08. New York, NY, USA: ACM, 2008, pp.
45–48.

[11] M. Fouda, Z. Fadlullah, N. Kato, R. Lu, and X. Shen, “A lightweight
message authentication scheme for smart grid communications,” IEEE

Trans. on Smart Grid, vol. 2, no. 4, pp. 675 –685, dec. 2011.
[12] Q. Li and G. Cao, “Multicast authentication in the smart grid with one-

time signature,” IEEE Trans. on Smart Grid, vol. 2, no. 4, pp. 686 –696,
dec. 2011.

[13] D. Wu and C. Zhou, “Fault-tolerant and scalable key management for
smart grid,” IEEE Trans. on Smart Grid, vol. 2, no. 2, pp. 375 –381,
june 2011.

[14] A. Saxena, O. Pal, S. Saiwan, and Z. Saquib, “Token based key
management scheme for scada communication,” Int. J. on Distributed

and Parallel Systems, vol. 2, no. 4, pp. 69–86, july 2011.
[15] D. Choi, H. Kim, D. Won, and S. Kim, “Advanced key-management

architecture for secure scada communications,” IEEE Trans. on Power

Delivery, vol. 24, no. 3, pp. 1154 –1163, july 2009.
[16] D. Choi, S. Lee, D. Won, and S. Kim, “Efficient secure group commu-

nications for scada,” IEEE Trans. on Power Delivery, vol. 25, no. 2, pp.
714 –722, april 2010.

[17] “KMIP key management interoperability protocol,” http://www.oasis-
open.org/committees/kmip/.

