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Measuring Human Performance on Clustering Problems: 
Some Potential Objective Criteria and Experimental Research 

Opportunities

Michael J. Brusco

Abstract

The study of human performance on discrete optimization problems has a considerable 

history that spans various disciplines. The purpose of this paper is to outline a program 

of study for the measurement of human performance on discrete optimization problems 

related to clustering of points in the two-dimensional plane. I describe possible objective 

criteria for clustering problems, the measurement of agreement of solutions produced 

by subjects, and categories of experiments for investigating human performance on 

clustering problems. To facilitate future experimental testing of human subjects on clus-

tering problems, optimal partitions were obtained for 233 two-dimensional clustering 

problems ranging in size from 10 to 70 points. For each test problem, an optimal solu-

tion was obtained for each of three objective criteria: (a) maximizing partition split, (b) 

minimizing partition diameter, and (c) minimizing within-cluster sums of squares, and 

similarity of the solutions among these criteria has been computed.

Introduction

Parker and Rardin (1988, chapter 1) characterize discrete optimization as a particular 

class of problems within the much larger field of combinatorics. The defining principle 

of discrete optimization is the minimization or maximization of some criterion measure 

over a finite set of mutually exclusive alternatives. There are many relevant discrete 

optimization problems, and such problems can vary significantly with respect to their 

computational tractability. A partial list of some of the most familiar discrete optimization 

problems is as follows: minimum spanning tree, shortest-route, traveling salesperson 

problem, graph coloring, p-median problem, set-covering problem, knapsack problem, 

bin-packing problem, and quadratic assignment problem. These problems have many 

important applications in areas such as facility location, vehicle routing, electrical cir-

cuitry, assembly line design, telecommunications network architecture, and the analysis 

of psychological data.
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The study of human performance with respect to discrete optimization tasks spans 

several problems and academic disciplines. During the 1970s and 1980s, operations 

research and management science specialists were particularly interested in comparing 

the performances of human subjects to computer algorithms on a type of quadratic as-

signment problem related to the location of departments within a facility (Block, 1977; 

Coleman, 1977; Herroelen & Van Gils, 1985; Scriabin & Vergin, 1975; Trybus & Hopkins, 

1980). Subjects were provided with information regarding the flow (or interaction) be-

tween each pair of q departments, which enabled them to place pairs of departments 

with high interactions close to one another in the layout. Subjects were also typically 

provided with a grid consisting of q possible locations. Each of q departments were to 

be placed in exactly one of the q locations in the grid, which yields a total finite solution 

space of q! possible arrangements. The criterion measure for this discrete optimization 

problem was to minimize overall weighted flow distance. The emphasis in these studies 

was primarily on identifying data characteristics that enabled humans to obtain solutions 

that were as good or better than computer implementations of heuristic algorithms. 

Understanding the cognitive processes that the human subjects used to develop their 

solutions was typically of lesser importance.

More recently, considerable research effort has been devoted to human performance 

on the two-dimensional Euclidean traveling salesperson problem in the field of experi-

mental psychology (Chronicle, MacGregor, Ormerod, & Burr, 2006; Graham, Joshi, & Pizlo, 

2000; Lee & Vickers, 2000; MacGregor & Ormerod, 1996, 2000; MacGregor, Ormerod, & 

Chronicle, 1999, 2000; Ormerod & Chronicle, 1999; van Rooij, Stege, & Schactman, 2003; 

Vickers, Butavicius, Lee, & Medvedev, 2001; Vickers, Lee, Dry, & Hughes, 2003). In this 

discrete optimization task, subjects are presented with N points in the two-dimensional 

plane. The subjects are asked to produce a tour that involves leaving from one of the 

points and sequentially visiting (only once) each of the other points, and then returning 

to the original point of departure. The feasible solution space consists of (N–1)!/2 pos-

sible sequences and the criterion measure is to minimize total Euclidean distance trav-

eled. MacGregor et al. (1999) recognized that the justification for investigating human 

performance on these problems transcends the fundamental interest in human cognitive 

ability. They observed that a more general study of spatial cognition could be facilitated 

by studying combinatorial optimization problems. Similarly, Vickers et al. (2001) noted 

that combinatorial optimization problems could be used to investigate broader, more 

general issues regarding how the brain constructs models of its environment. These 

authors further noted the potential use of combinatorial optimization problems in neu-

rophysiological tests.

The investigation of human clustering of points in the two-dimensional plane would 

seem to be a natural extension of recent research related to the two-dimensional traveling 

salesperson problem. Instead of constructing a single tour that connects all points, the 
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subjects would partition the points into a collection of clusters or groups. The clustering 

of points by subjects is not unprecedented in the experimental psychology literature. 

For example, there is a well-established history of research devoted to the counting or 

enumeration of points in the two-dimensional plane, and clustering of points to facilitate 

enumeration is an important component of this research stream (Atkinson, Cambell, & 

Francis, 1976; Beckwith & Restle, 1966; Klahr, 1973; van Oeffelen & Vos, 1982).

The principal focus of this paper is to link human clustering of points in the two-

dimensional plane to relevant partitioning optimization problems. This linkage should 

facilitate a better understanding of how humans perform on different clustering tasks, 

as well as what type of criterion individuals naturally employ in a grouping task. The 

next section of this paper provides a quantitative description of some of the most com-

mon partitioning optimization criteria, as well as the advantages and disadvantages of 

the respective criteria. This is followed by a section that outlines some alternatives for 

conducting experiments pertaining to human performance on clustering problems. For 

example, the number of clusters and/or the partitioning criterion could be prespecified 

by the experimenter, or left to the discretion of the subjects. In either case, the experi-

menter could employ well-grounded techniques for measuring the agreement of parti-

tions produced by subjects, as well as the agreement between a subject’s partition and 

an optimal partition. The paper concludes with a brief summary.

Clustering Problems

Notation and Assumptions

I limit coverage of clustering problems to situations involving a set of points, C = {i = 1, 

2,..., N}, in the two-dimensional plane. Each of the N points in the plane is defined by the 

coordinate pair, (x
i
, y

i
), for all 1 ≤ i ≤ N. It is helpful to define an N × N matrix of squared 

Euclidean distances between pairs of points, D, where elements of D are defined as:  

d
ij
 = d

ij
 = (x

i
 – x

j
)2 + (y

i
 – y

j
)2, for 1 ≤ i < j ≤ N and d

ii
 = 0 for 1 ≤ i ≤ N. The number of clusters 

is denoted as K, and the subset of points assigned to cluster k is defined as C
k
 for 1 ≤ k ≤ 

K. Together, the clusters (C
1
, ..., C

K
) are assumed to define a partition, P

K
, of the points in C, 

which implies that the clusters are nonempty (C
k
 ≠ ∅ for 1 ≤ k < l ≤ K), mutually exclusive 

(C
k
 ∩ C

l
 = ∅ for 1 ≤ k < l ≤ K), and exhaustive (C

1
 ∪ C

2
 ∪ ..., ∪ C

K
 = C).

In many applications, the desirable properties of a partition are that the clusters 

are homogeneous and well-separated. A homogeneous cluster consists of points that 

are close to one another. Two clusters are well-separated if there are no points in the 

first cluster that are close to any point in the second cluster. There are a host of objec-

tive criteria that can be used to obtain partitions with clusters that are well-separated 

and/or homogeneous. I will present three of the most well-known criteria: (a) maximiz-
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diameter(C
k
) = max {d

j
}

(i<j)∈C
k

ing partition split, (b) minimizing partition diameter, and (c) minimizing within-cluster 

sums of squares.

Maximizing Partition Split

The split between clusters C
k
 and C

l
, which is obtained as split(C

k
,C

l
) = min {d

j
}, is the small-

est distance from any point in C
k
 to any point in C

l
. The split of the partition is the minimum 

of the splits between all pairs of clusters, split(P
K
) = min {split(C

k
,C

l
)}. The objective of 

finding a partition, P
K
, that maximizes partition split is designed to produce clusters that 

are well-separated. The problem of finding a K-cluster partition that maximizes partition 

split is closely related to the problem of finding a minimum spanning tree for the points 

in the two-dimensional plane (see Hubert, 1974a for an especially thorough discussion of 

spanning trees in cluster analysis). A minimum spanning tree interconnects all points in 

the plane in minimum total distance. Once the minimum spanning tree is obtained, the 

maximum split partition is easily produced by breaking the K–1 longest links in the tree. 

Finding a minimum spanning tree is, in itself, an interesting optimization problem, and 

Vickers, Mayo, Heitmann, Lee, and Hughes (2004) recently investigated human perfor-

mance on finding minimum spanning trees. Because the construction of the minimum 

spanning tree can be done in polynomial time (e.g., Kruskal, 1956), the maximum split 

optimization problem is a relatively straightforward clustering problem. 

Minimizing Partition Diameter

The diameter of cluster C
k
 is the maximum distance between any pair of points in that 

cluster, diameter(C
k
) = max {d

j
}. The diameter of the partition is the maximum of the 

cluster diameters, diameter(P
K
) = max {diameter(C

k
)}. The objective of finding a partition, 

P
K
, that minimizes partition diameter is designed to produce clusters that are compact 

and homogeneous. For the special case of K = 2, the problem of minimizing partition 

diameter can be solved in polynomial time using an algorithm designed by Rao (1971); 

however, Brücker (1978) and Hansen and Delattre (1978) showed that minimum diameter 

partitioning is NP-hard for K ≥ 3. Fortunately, branch-and-bound methods can often fa-

cilitate optimal solution of minimum diameter partitioning problems with large N and K 

(Brusco & Cradit, 2004; Brusco & Stahl, 2005, chapter 3; Hansen & Delattre, 1978).

Minimizing Within-Cluster Sums of Squares

Perhaps the most popular partitioning criterion is the minimization of the within-cluster 

sums of squared deviations from the cluster centroids. This criterion is most typically as-

sociated with the well-known K-means clustering algorithms (Forgy, 1965; MacQueen, 

1967; Hartigan & Wong, 1979), and an excellent review of this literature was recently 

provided by Steinley (2006). For the two-dimensional case, the within-cluster sums of 

squares (WCSS) criterion for a partition, P
K
, is computed as follows: 

  (1)

 l∈C
k
,j∈Cl

l≤k<l≤K

(i<j)∈C
k

l≤k≤K

  K

WCSS(P
K
) = Σ Σ [(x

i
 – x–

k
)2 + (y

i
 – y–

k
)2],

                k = l   i∈C
k
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where x–
k 

=  and y–
k
= are the means of the x and y coordinates in cluster k (for 

1 ≤ k ≤ K), respectively, and n
k
 = |C

k 
| is the number of points assigned to cluster k (for 1 

≤ k ≤ K).  Using Huygens’s theorem (see Edwards & Cavalli-Sforza, 1965 or Späth, 1980, 

chapter 3), it is possible to represent WCSS(P
K
), using matrix D as follows: 

 (2)

Finding a partition that minimizes WCSS(P
K
) is an NP-hard optimization problem 

(Brücker, 1978). Dynamic programming methods (Hubert, Arabie, & Meulman, 2001; van 

Os & Meulman, 2004) can produce optimal solutions for problems with roughly 25 to 30 

points, and branch-and-bound procedures can produce optimal solutions for much larger 

problems (Brusco, 2006; Brusco & Stahl, 2005, chapter 5; Koontz, Narendra, & Fukunaga, 

1975). The effectiveness of the latter class of procedures depends not only on the number 

of points, but also on the number of clusters and the separation between clusters. For 

randomly generated points in the two-dimensional plane, Brusco successfully solved 

problems with up to N = 60 points and K = 6 clusters in a reasonable amount of time.

A Numerical Example

To demonstrate the partitioning criteria, I use a small numerical example from Brusco 

and Stahl (2005, p. 67). The data consist of N = 6 points in the two-dimensional plane, 

and the coordinates of the points are: (x
1
 = 7, y

1
 = 2), (x

2
 = 2, y

2
 = 4), (x

3
 = 5, y

3
 = 4), (x

4
 = 

4, y
4
 = 6), (x

5
 = 3, y

5
 = 1), (x

6
 = 8, y

6
 = 4). Optimal two-cluster partitions for these data for 

the criteria of partition split, partition diameter, and WCSS are displayed in Figure 1. The 

values of split(P
K
), diameter(P

K
), and WCSS(P

K
) for each partition in Figure 1 are reported 

in Table 1.

Table 1. Splits, diameters, and within-cluster sums of squares for  
the three partitions in Figure 1.

Optimization 
Criterion

Optimal 
Partition (P

K
)

Panel in 
Figure 1

split(P
K
) diameter(P

K
) WCSS(P

K
)

Maximize {1,2,3,4,6} {5} Top 10 36 30.80

Minimize {1,3,4,6} {2,5} Middle 8 25 23.00

Minimize {1,6} {2,3,4,5} Bottom 8 26 20.25

The partition in the top panel of Table 1 places five points in one cluster {1,2,3,4,6} and 

leaves point 5 in its own individual cluster. The split between these two clusters is the 

distance between point 5 and its closest neighbor among the remaining points, which 

is point 2 at a distance of 10. Thus, split(P
K
) = 10 for the partition in the top panel, and 

diameter(C
k
) = max {d

j
}

(i<j)∈C
k

  K

WCSS(P
K
) = Σ [ Σd

ij].                k = l       

(i<j)∈C
k

      nk      

Σx
i

i∈Ck

  n
k

Σy
i

i∈Ck

  n
k
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this is the maximum split among all possible two-cluster partitions. Although the clusters 

are well-separated, they are not compact, as the two most distant points in the data set 

(points 2 and 6) are in the same cluster. The relatively poor values of diameter(P
K
) = 36 

and WCSS(P
K
) = 30.80 reflect the lack of homogeneity for the partition in the top panel 

in Figure 1.

The partitions in the middle and bottom panels of Figure 1 exhibit much greater 

cluster homogeneity than the partition in the top panel. The cluster diameters for 

Figure 1. Optimal two-cluster partitions for 
criteria of: maximum partition split (top 
panel), minimum partition diameter (middle 
panel), and minimum within-cluster sum of 
squares (bottom panel).



Measuring Human Performance on Clustering Problems 39

• volume 1, no. 2 (Spring 2007)

the middle-panel partition are d
25

 = 10 for the cluster {2,5} and d
14

 = 25 for the cluster 

{1,3,4,6}. Therefore, the partition diameter is max(10, 25) = 25, which is the minimum 

partition diameter. Although the partition in the bottom panel is markedly different, its 

partition diameter is only slightly larger than the optimal value. The cluster diameters 

for the bottom-panel partition are d
16

 = 5 for the cluster {1,6} and d
45

 = 26 for the cluster 

{2,3,4,5}, resulting in a partition diameter of max(5, 26) = 26. Although the middle-panel 

partition has a slightly smaller value of diameter(P
K
) than the bottom-panel partition, the 

middle-panel partition’s WCSS(P
K
) = 23.00 is somewhat larger than the optimal value of 

WCSS(P
K
) = 20.25 corresponding to the bottom-panel partition. The middle-panel and 

bottom-panel partitions in Table 1 both yield split(P
K
) = 8.

A Larger Numerical Example

The preceding example is for a rather small synthetic data set, so I will provide a second 

example for a well-studied data set originally reported by Späth (1980, p. 43), which cor-

responds to the coordinates for 22 German cities (see Figure 2). Four-cluster partitions for 

these data were obtained for the maximum split, minimum diameter, and minimum WCSS 

criteria. The minimum spanning tree for the German cities data is displayed in Figure 3. 

The three dashed edges in the spanning tree are those edges that would be deleted to 

produce a maximum split, four-cluster partition.

Brusco and Stahl (2005, Chapter 5) obtained minimum WCSS partitions for the Ger-

man cities data for 2 ≤ K ≤ 8. Figure 4 provides the optimal four-cluster partition, which 

is represented by solid boundaries. The cities assigned to the four labeled clusters are 

C1 {Kiel, Lübeck, Hamburg, Bremen, Braunschweig}, C2 {Aachen, Köln, Essen, Münster, 

Bielefeld, Kassel}, C3 {Saarbrücken, Mannheim, Freiburg, Karlsruhe}, and C4 {Würzburg, 

Figure 2. A plot of Späth’s (1980, p. 43) coordi-
nates for 22 German cities.
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Augsburg, München, Nürnberg, Regensburg, Hof, Passau}. A minimum diameter four-

cluster partition can be obtained from the minimum WCSS partition by moving Würzburg 

from C4 to C3, as shown by the dashed lines in Figure 4. This move reduces the partition 

diameter because the distance from Würzburg to Passau is greater than the distance 

from Würzburg to Freiburg. Whereas the optimal partitions for the two homogeneity 

criteria (diameter and WCSS) are nearly identical, they are markedly different from the 

optimal partition for split suggested in Figure 3. To obtain the maximum split four-clus-

ter partition from the minimum WCSS (or minimum diameter) partition, clusters C3 and 

C4 would be merged, and a new, singleton cluster would be produced by removing 

Braunschweig from C1.

Figure 3. Minimum spanning tree for Späth’s 
(1980, p. 43) data for 22 German cities. The 3 
dashed lines are the ones that would be broken 
to produce a maximum split four-cluster parti-
tion. 

Figure 4. Optimal four-cluster partitions 
for Späth’s (1980, p. 43) data for 22 German 
cities. The solid lines show the minimum 
within-cluster sum of squares partition.  The 
dashed lines indicate that moving Würz-
burg from C4 to C3 produces a minimum-
diameter partition.  Joining C4 and C3 and 
moving Braunschweig to its own individual 
cluster will produce the maximum split 
partition in accordance with the minimum 
spanning tree in Figure 2.
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Critiquing Alternative Clustering Criteria

The examples in the preceding subsections show that, even for a small data set, three 

straightforward criteria can yield three different optimal partitions. For this reason, some 

discussion of the advantages and disadvantages of each criterion for measuring human 

performance is appropriate. Partition split and partition diameter are classic criteria with 

important links to hierarchical clustering as well as partitioning (Hubert, 1974b; Johnson, 

1967). These two criteria also have the advantage of monotone invariance. In other words, 

any order-preserving transformation of matrix D will not affect the optimal partition as-

sociated with the split and diameter criteria. If I repeated the numerical examples in the 

previous subsections after converting the squared Euclidean distances in D to Euclidean 

distances by taking the square root of each entry in D, the optimal partitions for split 

and diameter would remain unchanged. The within-cluster sums of squares criterion, as 

well as many related criteria that use sums of deviations, is not necessarily invariant to 

order-preserving transformations.

A possible disadvantage of the split criterion is a tendency to produce one or more 

singleton clusters (i.e., clusters with only one point) in the partition. Singleton clusters can 

also occur when minimizing diameter is the objective, however, the principal disadvantage 

of this criterion is the potential for a large number of alternative optimal partitions. In ap-

plied cluster analyses, problems associated with alternative optima can be addressed by 

enumerating all optimal partitions for modestly sized data sets (Guénoche, 1993), or by 

tie-breaking based on some secondary criterion (Brusco & Cradit, 2004, 2005). However, 

in an experimental study of human performance, 10 subjects could produce 10 different 

partitions and each partition could be of minimum diameter. The importance of measur-

ing agreement of partitions across subjects would, therefore, be at least as important as 

measuring proximity to the optimal criterion value.

The within-cluster sums of squares criterion is less susceptible to problems associ-

ated with alternative optima; however, it too has some potential drawbacks. It is well 

known that the criterion tends to produce spherical clusters of approximately the same 

size. In some clustering applications, clusters might assume more of an elliptical shape, 

perhaps with different spatial orientations and sizes. Alternative criteria for various shapes 

and orientations, which are principally based on determinants of within-cluster sums of 

squares matrices and/or between-cluster sums of squares matrices have been proposed 

by a number of authors (Banfield & Raftery, 1993; Friedman & Rubin, 1967; Maronna & 

Jacovkis, 1974; Marriott, 1982; Scott & Symons, 1971; Symons, 1981; Windham, 1987).

Human Performance Experiments in Cluster Analysis

The development of experiments to study human performance on clustering problems 

can employ a number of different design strategies. Stimuli for experiments could be pro-
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duced by randomly generating points in a two-dimensional plane, or by using previously 

published two-dimensional data sets from the clustering and related literature bases. 

Given a selected set of stimuli, I consider three possible categories for experiments, which 

progressively allocate more freedom to the subject in producing a clustering solution. 

The three categories are: (a) fixed K with a specific clustering criterion, (b) fixed K without 

a specific clustering criterion, and (c) flexible K without a specific clustering criterion.

Fixed K, Specific Criterion

In this type of experiment, subjects would be instructed to produce K clusters of the points 

using an objective criterion defined by the user (e.g., maximize split, minimize diameter, 

etc.). The communication of the task to subjects could potentially have considerable 

bearing on the quality of solutions produced. Some subjects might operate under a tacit 

assumption that clusters should be of roughly equal size, even for problems that have 

one or more small clusters or possibly even singleton clusters. Thus, the description of 

the task might not need only to describe the criterion, but also the concept of a partition 

and the admissible types of solutions. Performance comparisons could take at least three 

forms: (a) percentage deviation between the objective criterion associated with subject 

partitions and the optimal objective criterion value, (b) agreement between the optimal 

partition and the partitions provided by subjects, and (c) agreement among partitions 

provided across subjects. 

For measuring partition agreement in clustering experiments, I recommend Hubert 

and Arabie’s (1985) adjusted Rand index (ARI) as a measurement of agreement between 

two partitions. The ARI between two partitions, P1 and P2, is well-recognized and widely 

used in the classification literature (see Steinley, 2004 for an evaluation and review of 

the index). Table 2 facilitates a description of the ARI, which considers all N(N–1)/2 pairs 

of points (point pairs) in each of the two partitions. With respect to a given point pair 

(i, j), agreement between the two partitions occurs when points i and j are in the same 

cluster in P1 and in the same cluster in P2. Agreement also arises when points i and j are 

in different clusters in P1 and in different clusters in P2. Thus, disagreement only occurs 

when points i and j are in the same cluster in one partition, but in different clusters in 

the other partition. The ARI is computed as follows:

 (3)

where τ
1
 is the number of point pairs in same cluster for both P1 and P2, τ

2
 is the number 

of point pairs in different clusters for both P1 and P2, τ
3
 is the number of point pairs in 

the same cluster in P1 but different clusters for P2, and τ
4
 is the number of point pairs in 

ARI =
 (N(N – 1)/2) (τ

1 
+

 
τ

2
) – [(

 
τ

1 
+

 
τ

3
)( τ

1 
+

 
τ

4
) + (τ

2 
+

 
τ

3
)(τ

1 
+

 
τ

2
)].

                  (N(N – 1)/2) – [(
 
τ

1 
+

 
τ

3
)( τ

1 
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4
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2 
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3
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1 
+
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the same cluster in P2 but different clusters for P1. An ARI = 1, which occurs when τ
3
 = 

τ
4
 = 0, indicates perfect agreement between P1 and P2, whereas ARI near zero suggests 

chance agreement.

Table 2. Hubert and Arabie’s (1985) adjusted Rand index.

Partition 2

Number of Point 
Pairs in Same Cluster

Number of Point 
Pairs in Different 

Clusters
Totals

Partition 
1

Number of Point Pairs 
in Same Cluster

τ
1

τ
3

τ
1
 + τ

3

Number of Point Pairs 
in Different Clusters

τ
4

τ
2

τ
2
 + τ

4

Totals τ
1
 + τ

4
τ

2
 + τ

3
N(N–1)/2

To demonstrate the ARI, I return to the example in Figure 1. The partition in the middle 

panel of Figure 1 has the same split and nearly the same diameter as the partition in the 

bottom panel; however, the agreement between these two partitions as measured by 

the ARI is only –.17. In contrast, the middle-panel partition has a different split and much 

different diameter than the partition in the top panel; however, the ARI between these 

two partitions is .35. The key here is that there is not necessarily a one-to-one relationship 

between ARI and any given objective criterion value.

For a fixed K experiment with a specific criterion, one possible avenue for investi-

gation is relative subject performance as a function of N and K. For example, consider 

an experiment where the stimuli are produced by randomly generating 20, 40, or 80 

points in the plane. For a selected criterion, subjects could be asked to produce two-

cluster, four-cluster, and eight-cluster solutions for each of these stimuli. This results in a 

two-factor design with three levels for the number of points, N, and three levels for the 

number of clusters, K.

It could also be valuable to compare subject performances across different objec-

tive criteria. That is, for the same two-factor design, an experimenter could have subjects 

produce solutions given the criterion of maximum split, as well as solutions given the 

criterion of minimum diameter. Important research questions under this context might 

include: (a) do subjects exhibit better performance (relative to the optimum or simple 

heuristic procedures) for split or diameter?, and (b) is there greater agreement among 

subject partitions for the criterion of split, or for the criterion of diameter?
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Fixed K, No Specific Criterion

The second category of experiments removes one of the constraints on the subjects by 

not imposing a specific clustering criterion. This category could be especially important 

for understanding how humans would naturally tend to cluster points. Unfortunately, ex-

periments in this category present an additional obstacle with respect to communication 

of the task. In addition to understanding the concept of partition and feasible solutions 

for the task, the context of the question could affect the types of solutions that subjects 

produce. For example, telling the subjects that the points in the plane are the geographic 

coordinates of towns might induce results that are different than those produced by sub-

jects who are told that the points are birth and death rates for various countries. 

Despite the challenge of presenting an appropriate task description, experiments 

that do not impose a specific criterion offer a potentially valuable contribution. For 

example, two plausible questions that could be explored in this category are: 1) Do 

human subjects tend to focus more heavily on separation between the clusters they 

produce, or homogeneity within the clusters they produce? and 2) Do subjects favor 

the maximin criterion (split), the minimax criterion (diameter), or the minisum criterion 

(WCSS) in the solutions they generate? These questions could be assessed partially by 

comparing subject partitions to optimal partitions for split, diameter, and WCSS. As a 

simple example, suppose that the six-point stimulus used in Figure 1 was provided with 

a simple instruction to subjects to partition the points into two clusters. Which panel 

in Figure 1 would be more frequently provided by subjects? Is there a partition other 

than those in Figure 1 that would be more popular? What is the agreement of partitions 

across subjects as measured by ARI?

Flexible K, No Specific Criterion

This least restrictive experimental category would simply ask subjects to produce a 

partition of points without any criterion or designated number of clusters. In addition to 

experimental questions along the lines of those posited for fixed K (no specific criterion), 

another interesting issue arises with respect to the number of clusters used by subjects. 

What is the variability of the number of clusters used by subjects? As the number of clus-

ters increases, do subjects tend to focus more on partition diameter or more on split, or 

are they concerned with both separation and homogeneity in their solutions?

Failure to impose any constraint on K can have serious ramifications for the solutions 

produced by subjects. For example, one subject might examine a stimulus of points in the 

two-dimensional plane and conclude that there are no definitive clusters, thus choosing 

K = 1 (all points in one cluster) as the solution. Another subject could consider the same 

stimulus and place each point in its own cluster (K = N) because of a failure to observe 

any patterning in the data points. The remaining subjects could produce solutions that 

span the range of 1 ≤ K ≤ N clusters, which would make it difficult to draw any meaning-
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ful findings from the results. One possible remedy for this type of problem is to place a 

constraint on the permissible range for K; however, as this range is tightened, the problem 

approaches the fixed K problem category described above.

Computational Results for Selected Test Problems

I have compiled a database of optimal partitions for a number of two-dimensional test 

problems from the human performance and clustering literature. Table 3 provides a 

description of the selected test problems, including the original source, the number of 

data points, and the range of K for which optimal solutions were obtained. Some of the 

data sets in Table 3 were synthetically constructed (MacGregor & Ormerod, 1996), others 

represent the location of towns (Späth, 1980, pp. 43, 80), and one corresponds to birth and 

death rates in countries (Hartigan, 1975, chapter 11). There are 233 unique test problems, 

and optimal partitions for the split, diameter, and WCSS criteria were obtained for each 

Table 3. Test problems selected from the literature.

Problem 
label

Data source
Number of 

points, n
Range of 
clusters

Total number of 
test problems

DFJ_10 Dantzig, Fulkerson, & Johnson (1959) 10 2 ≤ K ≤ 9 8

MO6_10 MacGregor & Ormerod (1996, p. 539) 10 2 ≤ K ≤ 9 8

MO5_10 MacGregor & Ormerod (1996, p. 539) 10 2 ≤ K ≤ 9 8

MO4_10 MacGregor & Ormerod (1996, p. 539) 10 2 ≤ K ≤ 9 8

MO3_10 MacGregor & Ormerod (1996, p. 539) 10 2 ≤ K ≤ 9 8

MO2_10 MacGregor & Ormerod (1996, p. 539) 10 2 ≤ K ≤ 9 8

MO1_10 MacGregor & Ormerod (1996, p. 539) 10 2 ≤ K ≤ 9 8

MO16_20 MacGregor & Ormerod (1996, p. 539) 20 2 ≤ K ≤ 19 18

MO14_20 MacGregor & Ormerod (1996, p. 539) 20 2 ≤ K ≤ 19 18

MO12_20 MacGregor & Ormerod (1996, p. 539) 20 2 ≤ K ≤ 19 18

MO10_20 MacGregor & Ormerod (1996, p. 539) 20 2 ≤ K ≤ 19 18

MO8_20 MacGregor & Ormerod (1996, p. 539) 20 2 ≤ K ≤ 19 18

MO6_20 MacGregor & Ormerod (1996, p. 539) 20 2 ≤ K ≤ 19 18

MO4_20 MacGregor & Ormerod (1996, p. 539) 20 2 ≤ K ≤ 19 18

S_22 Späth (1980, p. 43) 22 2 ≤ K ≤ 21 20

KFM_48* Krolak, Felts, & Marble (1971, p. 332) 48 2 ≤ K ≤ 18 17

S_59 Späth (1980, p. 80) 59 2 ≤ K ≤ 8 7

H_70 Hartigan (1975, Ch. 11 ) 70 2 ≤ K ≤ 8 7

  *MacGregor et al. (1999) randomly extracted 48 of the 100 points in the Krolak et al. (1971) test problem.
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test problem. Optimal partitions for diameter and WCSS were obtained using the branch-

and-bound programs described by Brusco and Stahl (2005, chapters 3, 5), and a Fortran 

program was written to obtain the maximum split partition from a spanning tree. These 

programs can be obtained from the website <http://garnet.acns.fsu.edu/~mbrusco>. 

For smaller test problems, optimal solutions were obtained for 2 ≤ K ≤ N–1. How-

ever, for the larger test problems (N ≥ 48), this was not computationally feasible for the 

WCSS criterion. Therefore, optimal solutions were limited to smaller values of K for the 

larger test problems. I computed the ARI between each pair of optimal partitions (split 

vs. diameter, split vs. WCSS, and diameter vs. WCSS). These results should be used only 

as a guideline for relative agreement of optimal partitions among the criteria because 

they do not account for alternative optimal partitions for each criterion. Across the 233 

test problems, the average ARI values were .49, .52, and .70 for the split vs. diameter, 

split vs. WCSS, and diameter vs. WCSS comparisons, respectively.

There are many test problems where the agreement among the optimal partitions 

for the three criteria is mediocre or poor, and these could provide exceptional candidates 

for human performance experiments. For example, consider the 48-point data set from 

Krolak et al. (1971, p. 332), which is displayed in Figure 5a. Five-cluster partitions of this 

data set for split, diameter, and WCSS are displayed in Figures 5b, 5c, and 5d, respectively. 

The ARI values are .56, .58, and .64 for the split vs. diameter, split vs. WCSS, and diam-

eter vs. WCSS comparisons, respectively. Although there are clearly similarities among 

the partitions shown in Figures 5b through 5d, there are also some marked differences 

depending on the criterion selected. For example, the maximum split partition in Figure 

Figure 5a. A plot of 48-points from 
Krolak et al.’s (1971) data set.

Figure 5b. Maximum split partition 
for Krolak et al.’s (1971) 48-point data 
set when using K = 5 clusters.
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5b has a singleton cluster, as well as a large cluster on the right side of the figure. The 

large cluster on the right is subdivided in the minimum diameter and minimum WCSS 

partitions in Figures 5c and 5d; however, the manner in which the cluster is subdivided 

differs in these two figures.

The 70-point data set from Hartigan (1975, chapter 11) is visually displayed in Figure 6a. 

Five-cluster partitions of this data set for split, diameter, and WCSS are displayed in Figures 

6b, 6c, and 6d, respectively. The ARI values are .17, .04, and .48 for the split vs. diameter, 

split vs. WCSS, and diameter vs. WCSS comparisons, respectively. There is significant dispar-

ity among the partitions shown in Figures 6b through 6d. The maximum split partition in 

Figure 6b has three singleton clusters, one cluster with two points, and one large cluster 

with 65 points. The minimum diameter and minimum WCSS partitions in Figures 6b and 6c 

Figure 5c. Minimum diameter par-
tition for Krolak et al.’s (1971) 48-
point data set when using K = 5 
clusters.

Figure 5d. Minimum WCSS parti-
tion for Krolak et al.’s (1971) 48-
point data set when using K = 5 
clusters.

Figure 6a. A plot of 70-points (birth/
death rates) from Hartigan (1975) 
data set.



The Journal of Problem Solving •

48 Michael J. Brusco

both place the two extreme points in the upper right corner in the same cluster. The WCSS 

partition, however, has a more equitable balance of points across the remaining clusters.

Discussion

My goal in this paper was to outline some basic types of experiments that could expand 

research in human performance on optimization problems to areas of cluster analysis. I 

have couched most of the discussion within the simplest measures of cluster separation 

(split) and cluster homogeneity (diameter), with some lesser attention to within-cluster 

Figure 6d. Minimum WCSS partition 
for Hartigan’s (1975) 70-point data set 
when using K = 5 clusters.

Figure 6b. Maximum split partition 
for Hartigan’s (1975) 70-point data set 
when using K = 5 clusters.

Figure 6c. Minimum diameter partition 
for Hartigan’s (1975) 70-point data set 
when using K = 5 clusters.
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sums of squares partitioning because of its esteemed position in the classification litera-

ture. The split and diameter criteria were selected because they are especially easy to 

describe to human subjects. The WCSS criterion can be described with a bit more effort, 

but it would be virtually impossible to ask the average subject to produce a partition that 

optimizes some function of the determinant of a within-cluster sums of squares matrix. A 

possible alternative to the WCSS criterion is the K-median model (Klastorin, 1985), which 

has two advantages. First, the centroids of a K-median model correspond to actual points, 

as opposed to the “virtual” centroids of the WCSS solution that are averages across points 

in the cluster. Second, relative to WCSS, optimal solutions for two-dimensional K-median 

problems can generally be obtained for much larger N and K. 

I have also attempted to outline, in broad terms, some possible clustering experi-

ments. The principal goal was to identify some of the relevant controls on experiments 

(the stated objective and value of K). I have not proposed models of cognitive and visual 

processes to offer meaningful hypotheses regarding these types of experiments, nor have 

I addressed the issue of fitting mathematical models to reflect human performances. For 

sufficient understanding of the processes that underlie how humans cluster, it might 

well be necessary to consider more sophisticated, model-based clustering procedures 

(Banfield & Raftery, 1993). For example, none of the criteria offered in this paper would 

adequately represent how subjects would cluster a stimulus data set consisting of a few 

elliptical clusters with various spatial orientations.

There are also opportunities for integrating clustering and traveling salesperson 

problems in subsequent human performance experiments. For example, one general-

ization of the traveling salesperson problem requires multiple routes to stem from the 

same origin. Consider, for example, a delivery vehicle that must make deliveries to 20 

warehouses from a storage depot over a period of two days (Saturday and Sunday). 

The key questions are: (1) Which warehouses should receive deliveries on Saturday, and 

which ones should receive deliveries on Sunday? and (2) What are the optimal routes on 

each day? The objective is to minimize total distance traveled over the two-day period. 

Clearly, this problem involves a clustering problem because of the need to partition 

the warehouses into Saturday and Sunday deliveries. However, there is also a traveling 

salesperson problem for each day. How would human subjects solve two-dimensional 

Euclidean representations of this type of problem? Would they cluster the points first and 

then seek the routes? Alternatively, would subjects tend to begin by sketching out the 

routes and use them to help determine the clusters? There are many interesting problems 

that can have both clustering and routing components.

Author note

I am grateful to the Editor and two anonymous reviewers for helpful comments that led 

to tremendous improvements in this paper. 
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