Continuous “always-on” monitoring is beneficial for a number of applications, but potentially imposes a high load in terms of communication, storage and power consumption when a large number of variables need to be monitored. We introduce two new filtering techniques, swing filters and slide filters, that represent within a prescribed precision a time-varying numerical signal by a piecewise linear function, consisting of connected line segments for swing filters and (mostly) disconnected line segments for slide filters. We demonstrate the effectiveness of swing and slide filters in terms of their compression power by applying them to a reallife data set plus a variety of synthetic data sets. For nearly all combinations of signal behavior and precision requirements, the proposed techniques outperform the earlier approaches for online filtering in terms of data reduction. The slide filter, in particular, consistently dominates all other filters, with up to twofold improvement over the best of the previous techniques.


filtering techniques, swing filters, time-varying numerical signal, piecewise linear function

Date of this Version



Original manuscript



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.